精英家教网 > 高中数学 > 题目详情

已知椭圆)过点,且椭圆的离心率为
(1)求椭圆的方程;
(2)若动点在直线上,过作直线交椭圆两点,且为线段中点,再过作直线.求直线是否恒过定点,如果是则求出该定点的坐标,不是请说明理由。

(1);(2)直线恒过定点

解析试题分析:本题主要考查椭圆的标准方程以及几何性质、直线的标准方程、直线与椭圆的位置关系、韦达定理等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用点在椭圆上和离心率得到方程组,解出a和b的值,从而得到椭圆的标准方程;第二问,需要对直线MN的斜率是否存在进行讨论,(ⅰ)若存在点P在MN上,设出直线MN的方程,由于直线MN与椭圆相交,所以两方程联立,得到两根之和,结合中点坐标公式,得到直线MN的斜率,由于直线MN与直线垂直,从而得到直线的斜率,因为直线也过点P,写出直线的方程,经过整理,即可求出定点,(ⅱ)若直线MN的斜率不存在,则直线MN即为,而直线为x轴,经验证直线,也过上述定点,所以综上所述,有定点.
(1)因为点在椭圆上,所以, 所以,        1分
因为椭圆的离心率为,所以,即,      2分
解得,  所以椭圆的方程为.        4分
(2)设
①当直线的斜率存在时,设直线的方程为

所以, 因为中点,所以,即
所以,                  8分
因为直线,所以,所以直线的方程为
 ,显然直线恒过定点.    10分
②当直线的斜率不存在时,直线的方程为,此时直线轴,也过点.                 
综上所述直线恒过定点.    12分
考点:椭圆的标准方程以及几何性质、直线的标准方程、直线与椭圆的位置关系、韦达定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点(都在轴上方) ,且
(1)求椭圆的方程;
(2)当为椭圆与轴正半轴的交点时,求直线方程;
(3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线C:离心率是,过点,且右支上的弦过右焦点
(1)求双曲线C的方程;
(2)求弦的中点的轨迹E的方程;
(3)是否存在以为直径的圆过原点O?,若存在,求出直线的斜率k 的值.若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013·上海高考)如图,已知双曲线C1-y2=1,曲线C2:|y|=|x|+1.P是平面内一点.若存在过点P的直线与C1,C2都有共同点,则称P为“C1-C2型点”.

(1)在正确证明C1的左焦点是“C1-C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证).
(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”.
(3)求证:圆x2+y2=内的点都不是“C1-C2型点”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.
(1)求抛物线C的方程;
(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为椭圆的左右焦点,点为其上一点,且有
.
(1)求椭圆的标准方程;
(2)过的直线与椭圆交于两点,过平行的直线与椭圆交于两点,求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知动点到点的距离为,到轴的距离为,且
(1)求点的轨迹的方程;
(2) 若直线斜率为1且过点,其与轨迹交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

:的准线与轴交于点,焦点为;椭圆为焦点,离心率.设的一个交点.

(1)当时,求椭圆的方程.
(2)在(1)的条件下,直线的右焦点,与交于两点,且等于的周长,求的方程.
(3)求所有正实数,使得的边长是连续正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•浙江)如图,点P(0,﹣1)是椭圆C1+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.
(1)求椭圆C1的方程;
(2)求△ABD面积的最大值时直线l1的方程.

查看答案和解析>>

同步练习册答案