在平面直角坐标系
中,已知动点
到点
的距离为
,到
轴的距离为
,且
.
(1)求点
的轨迹
的方程;
(2) 若直线
斜率为1且过点
,其与轨迹
交于点
,求
的值.
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为
,过
的左焦点
的直线
被圆
截得的弦长为
.
(1)求椭圆
的方程;
(2)设
的右焦点为
,在圆
上是否存在点
,满足
,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
(
)过点
,且椭圆
的离心率为
.
(1)求椭圆
的方程;
(2)若动点
在直线
上,过
作直线交椭圆
于
两点,且
为线段
中点,再过
作直线
.求直线
是否恒过定点,如果是则求出该定点的坐标,不是请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆
.称圆心在原点O,半径为
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为
,其短轴上的一个端点到F的距离为
.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线
,使得
与椭圆C都只有一个交点,试判断
是否垂直?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在原点,焦点在
轴上,椭圆上的点到焦点的最小距离为
,离心率
.
(1)求椭圆
的方程;
(2)若直线
交
于
、
两点,点
,问是否存在
,使
?若存在求出
的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在原点的椭圆C:
的一个焦点为![]()
为椭圆C上一点,△MOF2的面积为
.
(1)求椭圆C的方程;
(2)是否存在平行于OM的直线l,使得l与椭圆C相交于A、B两点,且以线段AB为直径的圆恰好过原点?若存在,求出直线l的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的长轴长为
,离心率为
,
分别为其左右焦点.一动圆过点
,且与直线
相切.
(1)(ⅰ)求椭圆
的方程;(ⅱ)求动圆圆心轨迹
的方程;
(2)在曲线
上有四个不同的点
,满足
与
共线,
与
共线,且
,求四边形
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
的左、右焦点分别为
,其上顶点为
已知
是边长为
的正三角形.![]()
(1)求椭圆
的方程;
(2)过点
任作一动直线
交椭圆
于
两点,记
.若在线段
上取一点
,使得
,当直线
运动时,点
在某一定直线上运动,求出该定直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
,直线
,
是抛物线的焦点。![]()
(1)在抛物线上求一点
,使点
到直线
的距离最小;
(2)如图,过点
作直线交抛物线于A、B两点.
①若直线AB的倾斜角为
,求弦AB的长度;
②若直线AO、BO分别交直线
于
两点,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com