精英家教网 > 高中数学 > 题目详情

已知椭圆的中心在原点,焦点在轴上,椭圆上的点到焦点的最小距离为,离心率.
(1)求椭圆的方程;
(2)若直线两点,点,问是否存在,使?若存在求出的值,若不存在,请说明理由.

(1);(2)

解析试题分析:(1)由椭圆上的点到焦点的最小距离为,即.又离心率.解出的值.即可求出.从而得到椭圆的方程.
(2)直线两点,点,若存在,使.由直线与椭圆的方程联立以及韦达定理可得到关于的等式.再由向量的垂直同样可得到关于点的坐标的关系式.即可得到结论.
(1)设椭圆E的方程为
由已知得    ,从而     (2分)
 椭圆E的方程为                             (4分)
(2)由  
, 则
                 (6分)
由题意      (8分)
,就要, 又
 
      (10分)
 或,又
故存在 使得.                       (12分)
考点:1.待定系数法求椭圆的方程.2.向量的知识.3.解方程的思想.4.运算能力.5.分析解决数学问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,是抛物线为上的一点,以S为圆心,r为半径()做圆,分别交x轴于A,B两点,连结并延长SA、SB,分别交抛物线于C、D两点。
(1)求证:直线CD的斜率为定值;
(2)延长DC交x轴负半轴于点E,若EC : ED =" 1" : 3,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为椭圆的左右焦点,点为其上一点,且有
.
(1)求椭圆的标准方程;
(2)过的直线与椭圆交于两点,过平行的直线与椭圆交于两点,求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,短轴端点分别为.
(1)求椭圆的标准方程;
(2)若,是椭圆上关于轴对称的两个不同点,直线轴交于点,判断以线段为直径的圆是否过点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知动点到点的距离为,到轴的距离为,且
(1)求点的轨迹的方程;
(2) 若直线斜率为1且过点,其与轨迹交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,过点且离心率为.

(1)求椭圆的方程;
(2)已知是椭圆的左右顶点,动点M满足,连接AM交椭圆于点P,在x轴上是否存在异于A、B的定点Q,使得直线BP和直线MQ垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的中心和抛物线的顶点均为原点的焦点均在轴上,过的焦点F作直线,与交于A、B两点,在上各取两个点,将其坐标记录于下表中:


(1)求的标准方程;
(2)若交于C、D两点,的左焦点,求的最小值;
(3)点上的两点,且,求证:为定值;反之,当为此定值时,是否成立?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆c:(a>b>0)的离心率为,过其右焦点F与长轴垂直的弦长为1,
(1)求椭圆C的方程;
(2)设椭圆C的左右顶点分别为A,B,点P是直线x=1上的动点,直线PA与椭圆的另一个交点为M,直线PB与椭圆的另一个交点为N,求证:直线MN经过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•浙江)如图,点P(0,﹣1)是椭圆C1+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.
(1)求椭圆C1的方程;
(2)求△ABD面积的最大值时直线l1的方程.

查看答案和解析>>

同步练习册答案