精英家教网 > 高中数学 > 题目详情
经过椭圆的右焦点作倾斜角为的直线,交椭圆于A、B两点,O为坐标原点,则 ( )
A.  -3
B.
C.  -3或
D.
B

试题分析:由椭圆方程为得a2=2,b2=1,c2=a2-b2=1,焦点为(±1,0).
设直线的方程为y=x-1.与椭圆方程联立得:,设A(x1,y1),B(x2,y2),则x1•x2=0,x1+x2=,y1y2=(x1-1)(x2-1)=x1x2-(x1+x2)+1=1-=
所以=x1x2+y1y2=。故选B
点评:本题主要考查了椭圆的应用.当涉及过焦点的直线时,常需设出直线方程与椭圆方程联立利用韦达定理来解决.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

给出下列命题,其中正确命题的序号是          (填序号)。
(1)已知椭圆两焦点为,则椭圆上存在六个不同点,使得为直角三角形;
(2)已知直线过抛物线的焦点,且与这条抛物线交于两点,则的最小值为2;
(3)若过双曲线的一个焦点作它的一条渐近线的垂线,垂足为为坐标原点,则
(4)已知⊙则这两圆恰有2条公切线。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,F1和F2分别是双曲线的两个焦点,A和B是以O为圆心,|OF1|为半径的圆与该双曲线左支的两个交点,且△F2AB是等边三角形,则离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为,则双曲线C的离心率为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆G:的右焦点F为,G上的点到点F的最大距离为,斜率为1的直线与椭圆G交与两点,以AB为底边作等腰三角形,顶点为P(-3,2)
(1)求椭圆G的方程;
(2)求的面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)抛物线的顶点在坐标原点,焦点在轴的负半轴上,过点作直线与抛物线交于A,B两点,且满足,
(1)求抛物线的方程
(2)当抛物线上的一动点P从A运动到B时,求面积的的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F1、F2分别是双曲线的左、右焦点,A是其右顶点,过F2作x轴的垂线与双曲线的一个交点为P,G是的重心,若,则双曲线的离心率是(  )
A.2B.C.3D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的一条弦被平分,那么这条弦所在的直线方程是  (   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的准线与双曲线的右准线重合,则的值是  (   )
A.B.C.D.

查看答案和解析>>

同步练习册答案