精英家教网 > 高中数学 > 题目详情
14.已知实数x,y满足x2+y2≤1,3x+4y≤0,则$\frac{x-3}{x-y-2}$的取值范围是(  )
A.[1,4]B.[$\frac{19}{17}$,4]C.[1,$\frac{11}{3}$]D.[$\frac{19}{17}$,$\frac{11}{3}$]

分析 画出x2+y2≤1,3x+4y≤0,表示区域,化简目标函数,利用目标函数的几何意义,求解即可.

解答 解:实数x,y满足x2+y2≤1,3x+4y≤0,表示的区域如图:
则$\frac{x-3}{x-y-2}$=$\frac{1}{\frac{x-y-2}{x-3}}$=$\frac{1}{1-\frac{y-1}{x-3}}$,$\frac{y-1}{x-3}$表示阴影区域与(3,1)连线的斜率,$\left\{\begin{array}{l}{3x+4y=0}\\{{x}^{2}+{y}^{2}=1}\end{array}\right.$解得A($\frac{4}{5}$,-$\frac{3}{5}$).B(-$\frac{4}{5}$,$\frac{3}{5}$),kPB=$\frac{1-\frac{3}{5}}{3+\frac{4}{5}}$=$\frac{2}{19}$
则$\frac{x-3}{x-y-2}$=$\frac{-\frac{4}{5}-3}{-\frac{4}{5}-\frac{3}{5}-2}$=$\frac{19}{17}$,
令y-1=k(x-3),可得kx-y-3k+1=0,
由题意可得:$\frac{|1-3k|}{\sqrt{1+{k}^{2}}}=1$,可得k=0或k=$\frac{3}{4}$,
$\frac{y-1}{x-3}$∈[$\frac{2}{19}$,$\frac{3}{4}$],
1-$\frac{y-1}{x-3}$∈[$\frac{1}{4}$,$\frac{17}{19}$].
∴$\frac{x-3}{x-y-2}$∈[$\frac{19}{17}$,4].
故选:B.

点评 本题考查线性规划的应用,目标函数的几何意义的转化与求解是解题的关键,考查数形结合以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在平行四边形ABCD中,O是对角线的交点,E是边CD上一点,且CE=$\frac{1}{3}$CD,$\overrightarrow{OE}$=m$\overrightarrow{AB}$+n$\overrightarrow{AD}$,则m+n=(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,建立平面直角坐标系xoy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-$\frac{1}{20}$(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.
(1)若k=2,求炮的射程;
(2)求炮的最大射程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△OAB中,C是线段AB上一点,且CB=2AC,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,试用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{OC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)=$\frac{5}{{x}^{2}}$-3x2+2,则使得f(1)>f(log3x)成立的x取值范围为0<x<3或x>3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知F1、F2是椭圆E:$\frac{{y}^{2}}{{b}^{2}}$+$\frac{{x}^{2}}{{a}^{2}}$=1(a>b>0)的左、右焦点,椭圆E的离心率为$\frac{1}{2}$.过原点O的直线交椭圆于C、D两点,若四边形C F1DF2的面积最大值为2$\sqrt{3}$.
(1)求椭圆E的方程
(2)若直线1与椭圆E交于A、B且OA⊥OB,求证:原点O到直线1的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,且Sn=2an-$\frac{1}{2}$.
(1)求数列{an}的通项公式;
(2)若bn=$lo{g}_{\frac{1}{2}}{{a}_{n}}^{2}$,求数列{$\frac{{b}_{n}}{{a}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.A={x|2-a≤x≤2+a},B={x|(x-1)(x-4)≥0}
(1)当a=3时,求A∩B;
(2)若a>0,且A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.数列{an}的前n项和为Sn,a1=1,Sn=2an+1,则Sn=(  )
A.2n-1B.${(\frac{1}{2})^{n-1}}$C.${(\frac{2}{3})^{n-1}}$D.${(\frac{3}{2})^{n-1}}$

查看答案和解析>>

同步练习册答案