在平面直角坐标系
中,如图,已知椭圆E:
的左、右顶点分别为
、
,上、下顶点分别为
、
.设直线
的倾斜角的正弦值为
,圆
与以线段
为直径的圆关于直线
对称.
![]()
(1)求椭圆E的离心率;
(2)判断直线
与圆
的位置关系,并说明理由;
(3)若圆
的面积为
,求圆
的方程.
(1)
,(2)相切,(3)
.
【解析】
试题分析:(1)求椭圆E的离心率,只需列出关于
的一个等量关系就可解出. 因为直线
的倾斜角的正弦值为
,所以
,即
,(2)判断直线
与圆
的位置关系,通常利用圆心到直线距离与半径大小比较. 因为直线
的倾斜角的正弦值为
,所以直线
的斜率为
于是
的方程为:
,因此
中点
到直线
距离为
所以直线
与圆
相切,又圆
与以线段
为直径的圆关于直线
对称,直线
与圆
相切.(3)由圆
的面积为
知圆半径为1,所以
设
关于直线
:
的对称点为
,则
解得
.所以,圆
的方程为
.
【解】(1)设椭圆E的焦距为2c(c>0),
因为直线
的倾斜角的正弦值为
,所以
,
于是
,即
,所以椭圆E的离心率
(2)由
可设
,
,则
,
于是
的方程为:
,
故
的中点
到
的距离![]()
, 又以
为直径的圆的半径
,即有
,
所以直线
与圆
相切.
(3)由圆
的面积为
知圆半径为1,从而
,
设
的中点
关于直线
:
的对称点为
,
则
解得
.所以,圆
的方程为
.
考点:椭圆离心率,直线与圆位置关系,点关于直线对称点
科目:高中数学 来源:2013-2014学年江苏省高三下学期4月周练理科数学试卷(解析版) 题型:解答题
在直角坐标系
中,曲线
的参数方程为
(
为参数),若以直角坐标系
的
点为极点,
轴正方向为极轴,且长度单位相同,建立极坐标系,得直线
的极坐标方程为
.求直线
与曲线
交点的极坐标.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省高三下学期4月周练理科数学试卷(解析版) 题型:填空题
已知
为不共线的向量,设条件M:
;条件N:对一切
,不等式
恒成立.则M是N的 条件.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省徐州市高三第三次质量检测文科数学试卷(解析版) 题型:填空题
在等比数列
中,已知
,
.设
为该数列的前
项和,
为数列
的前
项和.若
,则实数
的值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com