精英家教网 > 高中数学 > 题目详情
19.若正方形ABCD边长为2,E为边上任意一点,则AE的长度大于$\sqrt{5}$的概率等于(  )
A.$\frac{2}{3}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{1}{3}$

分析 由题意,E为BC或CD中点时,AE=$\sqrt{5}$,AE的长度大于$\sqrt{5}$,E所能取到点的长度为2,即可得出结论.

解答 解:由题意,E为BC或CD中点时,AE=$\sqrt{5}$,AE的长度大于$\sqrt{5}$,E所能取到点的长度为2,
∵正方形的周长为8,
∴AE的长度大于$\sqrt{5}$的概率等于$\frac{2}{8}$=$\frac{1}{4}$,
故选B.

点评 本题考查几何概型,考查学生的计算能力,确定长度为测度是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.下表数据为某地区某种农产品的年产量x(单位:吨)及对应销售价格y(单位:千元/吨).
x12345
y7065553822
(1)若y与x有较强的线性相关关系,根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)若每吨该农产品的成本为13.1千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润Z最大?
参考公式:$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x为实数,则“$\frac{1}{x}<1$”是“x>1”的(  )
A.充分非必要条件B.充要条件
C.必要非充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知p:x2+mx+1=0有两个不相等的负实根,q:方程4x2+4(m-2)x+1=0无实根,若p∧q为假,p∨q为真求:m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若存在实数m,n使函数f(x)=$\sqrt{x+3}$+k的定义域为[m,n],值域为[-n,-m],则实数k的取值范围是[2,$\frac{9}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若正数a,b,c满足$\frac{b+c}{a}$+$\frac{a+c}{b}$=$\frac{a+b}{c}$+1,则$\frac{a+b}{c}$的最小值是$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.有下列命题:
①已知$\overrightarrow{a}$,$\overrightarrow{b}$是平面内两个非零向量,则平面内任一向量$\overrightarrow{c}$都可表示为λ$\overrightarrow{a}$+μ$\overrightarrow{b}$,其中λ,μ∈R;
②对任意平面四边形ABCD,点E、F分别为AB、CD的中点,则$2\overrightarrow{EF}=\overrightarrow{AD}+\overrightarrow{BC}$;
③直线x-y-2=0的一个方向向量为(1,-1);
④在△ABC中,AB=2,AC=3,$\overrightarrow{AB}•\overrightarrow{BC}=1$则BC=$\sqrt{3}$;
其中正确的是②④(写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=$\left\{\begin{array}{l}{x^2}-131,x>10\\ f(f(x+2)),x≤10\end{array}\right.$,则f(8)的值为(  )
A.13B.-67C.1313D.-6767

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax3+bx2+4x的极小值为-8,其导函数y=f'(x)的图象经过点(-2,0),如图所示.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求函数y=f(x)在区间[-3,2]上的最大值与最小值.

查看答案和解析>>

同步练习册答案