精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点分别为F1,F2,离心率为
2
2
,且过点(2,
2
)

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)M,N,P,Q是椭圆C上的四个不同的点,两条都不和x轴垂直的直线MN和PQ分别过点F1,F2,且这两条直线互相垂直,求证:
1
|MN|
+
1
|PQ|
为定值.
(Ⅰ)由已知e=
c
a
=
2
2
,得
b2
a2
=
a2-c2
a2
=1-e2=
1
2

所以a2=2b2
所以C:
x2
2b2
+
y2
b2
=1
,即x2+2y2=2b2
因为椭圆C过点(2,
2
)
,所以22+2(
2
)2=2b2

得b2=4,a2=8.
所以椭圆C的方程为
x2
8
+
y2
4
=1

(Ⅱ)证明:由(Ⅰ)知椭圆C的焦点坐标为F1(-2,0),F2(2,0).
根据题意,可设直线MN的方程为y=k(x+2),
由于直线MN与直线PQ互相垂直,则直线PQ的方程为y=-
1
k
(x-2)

设M(x1,y1),N(x2,y2).
由方程组
y=k(x+2)
x2
8
+
y2
4
=1
消y得(2k2+1)x2+8k2x+8k2-8=0.
则 x1+x2=
-8k2
2k2+1
x1x2=
8k2-8
2k2+1

所以|MN|=
1+k2
|x1-x2|
=
1+k2
(x1+x2)2-4x1x2
=
4
2
(1+k2)
2k2+1

同理可得|PQ|=
4
2
(1+k2)
k2+2

所以
1
|MN|
+
1
|PQ|
=
2k2+1
4
2
(1+k2)
+
k2+2
4
2
(1+k2)
=
3k2+3
4
2
(1+k2)
=
3
2
8
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案