精英家教网 > 高中数学 > 题目详情

设平面的一个法向量为,平面的一个法向量为

,则k=                                          (  )

A.2                B.-4              C.-2              D.4

 

【答案】

D

【解析】

试题分析:因为题意可知,,且平面的一个法向量为,平面的一个法向量为,则可知平行于,则可知k=4,故可知答案为B.

考点:空间向量的位置关系

点评:主要是考查了平行平面的法向量的平行的关系的运用,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知O为坐标原点,点A的坐标为(a,b),点B的坐标为(cosωx,sinωx),其中a2+b2≠0且ω>0.设f(x)=
OA
OB

(1)若a=
3
,b=1,ω=2,求方程f(x)=1在区间[0,2π]内的解集;
(2)若点A是过点(-1,1)且法向量为
n
=(-1,1)
的直线l上的动点.当x∈R时,设函数f(x)的值域为集合M,不等式x2+mx<0的解集为集合P.若P⊆M恒成立,求实数m的最大值;
(3)根据本题条件我们可以知道,函数f(x)的性质取决于变量a、b和ω的值.当x∈R时,试写出一个条件,使得函数f(x)满足“图象关于点(
π
3
,0)
对称,且在x=
π
6
处f(x)取得最小值”.

查看答案和解析>>

科目:高中数学 来源: 题型:

设平面α的一个法向量为
n1
=(1,2,-2)
,平面β的一个法向量为
n2
=(-2,-4,k)
,若α∥β,则k=(  )

查看答案和解析>>

科目:高中数学 来源:2010年上海市普陀区高考数学二模试卷 (理科)(解析版) 题型:解答题

在平面直角坐标系中,已知O为坐标原点,点A的坐标为(a,b),点B的坐标为(cosωx,sinωx),其中a2+b2≠0且ω>0.设
(1)若,b=1,ω=2,求方程f(x)=1在区间[0,2π]内的解集;
(2)若点A是过点(-1,1)且法向量为的直线l上的动点.当x∈R时,设函数f(x)的值域为集合M,不等式x2+mx<0的解集为集合P.若P⊆M恒成立,求实数m的最大值;
(3)根据本题条件我们可以知道,函数f(x)的性质取决于变量a、b和ω的值.当x∈R时,试写出一个条件,使得函数f(x)满足“图象关于点对称,且在处f(x)取得最小值”.

查看答案和解析>>

科目:高中数学 来源:2013届江苏省高二4月月考理科数学试卷(解析版) 题型:解答题

如图,在正方体中,是棱的中点,在棱上.

,若二面角的余弦值为,求实数的值.

【解析】以A点为坐标原点,AB为x轴,AD为y轴,AA1为z轴,建立空间直角坐标系,设正方体的棱长为4,分别求出平面C1PQ法向量和面C1PQ的一个法向量,然后求出两法向量的夹角,建立等量关系,即可求出参数λ的值.

 

查看答案和解析>>

同步练习册答案