解:(Ⅰ)由已知
,……………………………………………………(2分)
.
故曲线
在
处切线的斜率为
.…………………………………(4分)
(Ⅱ)
.……………………………………………………(5分)
①当
时,由于
,故
,
所以,
的单调递增区间为
.………………………………………(6分)
②当
时,由
,得
.
在区间
上,
,在区间
上
,
所以,函数
的单调递增区间为
,单调递减区间为
.………(8分)
(Ⅲ)由已知,转化为
.…………………………………………………(9分)
……………………………………………………………………………(10分)
由(Ⅱ)知,当
时,
在
上单调递增,值域为
,故不符合题意.
(或者举出反例:存在
,故不符合题意.)……………………(11分)
当
时,
在
上单调递增,在
上单调递减,
故
的极大值即为最大值,
,…………(13分)
所以
,
解得
. ………………………………………………………………………(14分)