【题目】如图,已知在四棱锥
中,底面
是边长为4的正方形,
是正三角形,平面
平面
,
分别是
的中点.
![]()
(1)求证:平面
平面
;
(2)若
是线段
上一点,求三棱锥
的体积.
【答案】(1)证明见解析;(2)
.
【解析】
试题分析:(1)要证明面面垂直,只需在一个平面内找到另一平面的一条垂线.由已知平面
平面
,且
,可证
平面
,再根据
是中位线,可证
,从而
平面
,进而再证平面
平面
,该题实质是先找到面
的一条垂线
,再将
平移到面
内;
(2)点
是线段
的动点,考虑到
和
到面
的距离相等,故
,再结合第(1)问结果,取
的中点
连接
,据面面垂直的性质,点
到
的距离就是三棱锥
的高,再求
,进而求体积.
试题解析:(1)∵平面
平面
,平面
平面
,![]()
平面
,
,
平面
,又
中,
分别是
的中点,
,可得
平面
,![]()
平面
,∴平面
平面
;
(2)
,![]()
平面
,![]()
平面
,
平面
,因此
上的点
到平面
的距离等于点
到平面
的距离,∴
,取
的中点
连接
,则
,
平面
,![]()
平面
,∴
,于是
,
∵平面
平面
,平面
平面
,
是正三角形,∴点
到平面
的距离等于正
的高,即为
,因此,三棱锥M﹣EFG的体积
=
=
.
科目:高中数学 来源: 题型:
【题目】为了迎接旅游旺季的到来,少林寺设置了一个专门安排旅客住宿的客栈,寺庙的工作人员发现为游客准备的食物有些月份剩余不少,浪费很严重,为了控制经营成本,减少浪费,就想适时调整投入.为此他们统计每个月入住的游客人数,发现每年各个月份来客栈入住的游客人数会呈现周期性的变化,并且有以下规律:
①每年相同的月份,入住客栈的游客人数基本相同;
②入住客栈的游客人数在
月份最少,在
月份最多,相差约
人;
③
月份入住客栈的游客约为
人,随后逐月增加直到
月份达到最多.
(1)试用一个正弦型三角函数描述一年中入住客栈的游客人数与月份之间的关系;
(2)请问哪几个月份要准备
份以上的食物?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一个口袋有
个白球,
个黑球,这些球除颜色外全部相同,现将口袋中的球随机逐个取出,并依次放入编号为
,
,
,
的抽屉内.
(1)求编号为
的抽屉内放黑球的概率;
(2)口袋中的球放入抽屉后,随机取出两个抽屉中的球,求取出的两个球是一黑一白的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.
(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;
(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com