精英家教网 > 高中数学 > 题目详情
如图,在底面为平行四边形的四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,AD=1,CD=2,∠DCB=60°
(1)求证:平面A1BCD1⊥平面BDD1B1
(2)若D1D=BD,求点D到平面A1BCD1
考点:平面与平面垂直的判定,点、线、面间的距离计算
专题:空间位置关系与距离
分析:(1)首先利用勾股定理和余弦定理求出相关的线线垂直,进一步利用线面的垂直的判定和性质
转换为面面垂直的判定,从而证明结论.
(1)利用(1)的结论,进一步利用等面积法求的结果.
解答: 证明:(1)在底面为平行四边形的四棱柱ABCD-A1B1C1D1
D1D⊥底面ABCD,DD1⊥A1D1
AD=1,CD=2,∠DCB=60°利用余弦定理得:BD=
3

△BDC为直角三角形
BD⊥BC
AD⊥BD
∴A1D1⊥B1D1
所以A1D1⊥平面BDD1B1  A1D1?平面A1BCD1
所以:平面A1BCD1⊥平面BDD1B1
(2)解:连BD1,作DM⊥BD1
由(1)知
平面A1BCD1平面BDD1B1∵平面A1BCD1∩平面BDD1B1=BD1∴DM⊥平面A1BCD1
由已知BD=
3

DD1=
3

∵D1D⊥底面ABCD
∴DD1⊥BD∴BD1=
6

1
2
×
3
×
3
=
1
2
×DM×
6
DM=
6
2

点评:本题考查的知识点:勾股定理得逆定理,余弦定理,线面垂直的性质与判定,面面垂直的判定以及等面积法的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=xlnx,g(x)=
ax2
2
,直线l:y=(k-3)x-k+2
(1)函数f(x)在x=e处的切线与直线l平行,求实数k的值
(2)若至少存在一个x0∈[1,e]使f(x0)<g(x0)成立,求实数a的取值范围
(3)设k∈Z,当x>1时f(x)的图象恒在直线l的上方,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=
ex-e-x
2
,C(x)=
ex+e-x
2
,下面正确的运算公式是(  )
①S(x+y)=S(x)C(y)+C(x)S(y)     
②S(x-y)=S(x)C(y)-C(x)S(y)
③2S(x+y)=S(x)C(y)+C(x)S(y)
④2S(x-y)=S(x)C(y)-C(x)S(y)
A、①②B、③④C、①④D、②③

查看答案和解析>>

科目:高中数学 来源: 题型:

在Rt△ABC中,∠C=90°,∠A=30°,BC=1,D为斜边AB的中点,则
AB
CD
=(  )
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知有相同焦点F1、F2的椭圆
x2
m
+y2=1(m>1)和双曲线
x2
n
-y2=1(n>0),点P是它们的一个交点,则三角形F1PF2面积的大小是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l经过直线l1:2x+y-5=0与l2:x-2y=0的交点,且点P(5,0)到直线l的距离为3,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=
3
2
|F1F2|.
(1)求椭圆的离心率;
(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,a1=31,Sn是它的前n项和,S10=S22,求数列{an}的通项an和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列函数的奇偶性,写出过程:
(1)f(x)=|x+1|
(2)f(x)=
x2
1+x2

(3)f(x)=x3
(4)f(x)=x2-2x
(5)f(x)=
x+1
x-1

查看答案和解析>>

同步练习册答案