精英家教网 > 高中数学 > 题目详情

如图,双曲线与抛物线相交于,直线AC、BD的交点为P(0,p)。

(I)试用m表示

(II)当m变化时,求p的取值范围。

 

【答案】

(Ⅰ)x1x2·

(Ⅱ)p的取值范围是

【解析】

试题分析:(Ⅰ)依题意,A、B、C、D四点坐标是下面方程组的解:

消去x,得y2-y+1-m=0,                     2分

由Δ=1-4(1-m)>0,得m>

且y1+y2=1,y1y2=1-m.

x1x2·.    6分

(Ⅱ)由向量=(x1,y1-p)与=(-x2,y2-p)共线,

得x1(y2-p)+x2(y1-p)=0,

∴p=            9分

∵m>,∴0<p<

故p的取值范围是.                     12分

考点:双曲线、抛物线的位置关系,平面向量的坐标运算。

点评:中档题,涉及曲线的位置关系问题,往往通过联立方程组,消元后,应用韦达定理,简化运算过程。本题(II)通过应用平面向量共线的条件,建立了p,m的关系,利用函数的观点,确定得到p的范围。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,双曲线
x23
-y2=1
与抛物线x2=3(y+m)相交于A(x1,y1),B(-x1,y1),C(-x2,y2)D(x2,y2),(x1>0,x2>0),直线AC、BD的交点为P(0,p).
(Ⅰ)试用m表示x1x2
(Ⅱ)当m变化时,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河北省唐山市高三下学期第二次模拟考试数学理卷 题型:解答题

(本小题满分12分)

        如图,双曲线与抛物线相交于

,直线AC、BD的交点为P(0,p)。

   (I)试用m表示

   (II)当m变化时,求p的取值范围。

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,双曲线与抛物线相交于,直线AC、BD的交点为P(0,p)。

(I)试用m表示

(II)当m变化时,求p的取值范围。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省聊城市四县六校联考高一(下)期末数学试卷(解析版) 题型:解答题

如图,双曲线与抛物线x2=3(y+m)相交于A(x1,y1),B(-x1,y1),C(-x2,y2)D(x2,y2),(x1>0,x2>0),直线AC、BD的交点为P(0,p).
(Ⅰ)试用m表示x1x2
(Ⅱ)当m变化时,求p的取值范围.

查看答案和解析>>

同步练习册答案