精英家教网 > 高中数学 > 题目详情

【题目】一个圆锥底面半径为,高为

1)求圆锥的表面积.

2)求圆锥的内接正四棱柱表面积的最大值.

【答案】1;(2.

【解析】

1)计算出圆锥的母线长,然后利用圆锥的表面积公式计算即可;

2)设正四棱柱的底面对角线的一半为,根据轴截面上的两个三角形相似,列出比例式求出四棱柱的高,根据正四棱柱的表面积公式得出其表面积的表达式,然后利用二次函数的基本性质得出该正四棱柱表面积的最大值.

1)由题意可知,圆锥的母线长为

所以,该圆锥的表面积为

2)如下图所示,设正四棱柱的底面对角线的一半为

,即,解得

正四棱柱的底面是一个正方形,其底边长为,底面积为

所以,四棱柱的底面积为

由二次函数的基本性质可知,当时,

正四棱柱的表面积有最大值,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,扇形AOB,圆心角AOB等于60°,半径为2,在弧AB上有一动点P,过P引平行于OB的直线和OA交于点C,设∠AOPθ,求△POC面积的最大值及此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设复数z=2m+4-m2i,其中i为虚数单位,当实数m取何值时,复数z对应的点:

1)位于虚轴上;

2)位于一、三象限;

3)位于以原点为圆心,以4为半径的圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线经过抛物线的焦点,且垂直于抛物线的对称轴,与抛物线两交点间的距离为4.

(1)求抛物线的方程;

(2)已知,过的直线与抛物线相交于两点,设直线的斜率分别为,求证:为定值,并求出定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆Γ 的右焦点为F,过点F且斜率为k的直线与椭圆Γ交于A(x1, y1)B(x2, y2)两点(Ax轴上方),点A关于坐标原点的对称点为P,直线PAPB分别交直线lx=4MN两点,记MN两点的纵坐标分别为yMyN

(1) 求直线PB的斜率(k表示)

(2) 求点MN的纵坐标yMyN (x1, y1表示) ,并判断yM yN是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关线性回归分析的四个命题:

①线性回归直线必过样本数据的中心点();

②回归直线就是散点图中经过样本数据点最多的那条直线;

③当相关性系数时,两个变量正相关;

④如果两个变量的相关性越强,则相关性系数就越接近于

其中真命题的个数为(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】到2020年,我国将全面建立起新的高考制度,新高考采用模式,其中语文、数学、英语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣、爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门(6选3)参加考试,满分各100分.为了顺利迎接新高考改革,某学校采用分层抽样的方法从高一年级1000名(其中男生550名,女生450名)学生中抽取了名学生进行调查.

(1)已知抽取的名学生中有女生45名,求的值及抽取的男生的人数.

(2)该校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目,且只能选择一个科目),得到如下列联表.

选择“物理”

选择“地理”

总计

男生

10

女生

25

总计

(i)请将列联表补充完整,并判断是否有以上的把握认为选择科目与性别有关系.

(ii)在抽取的选择“地理”的学生中按性别分层抽样抽取6名,再从这6名学生中抽取2名,求这2名中至少有1名男生的概率.

附:,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列是关于复数的类比推理:

①复数的加减法运算可以类比多项式的加减法运算法则;

②由实数绝对值的性质|x|2=x2类比得到复数z的性质|z|2=z2

③已知a,b∈R,若a-b>0,则a>b类比得已知z1,z2∈C,若z1-z2>0,则z1>z2

④由向量加法的几何意义可以类比得到复数加法的几何意义.

其中推理结论正确的是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】铁人中学高二学年某学生对其亲属30人饮食习惯进行了一次调查,并用如图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.)

(Ⅰ)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯;

(Ⅱ)根据以上数据完成下列的列联表:

主食蔬菜

主食肉类

合计

50岁以下人数

50岁以上人数

合计人数

(Ⅲ)能否在犯错误的概率不超过0.01的前提下认为其亲属的饮食习惯与年龄有关系?

附:.

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案