精英家教网 > 高中数学 > 题目详情
5.$\overrightarrow{AB}$+$\overrightarrow{CF}$+$\overrightarrow{BC}$+$\overrightarrow{FA}$=$\overrightarrow{0}$.

分析 利用向量的多边形法则即可得出.

解答 解:原式=$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CF}+\overrightarrow{FA}$
=$\overrightarrow 0$,
故答案为:$\overrightarrow{0}$.

点评 本题考查了向量的多边形法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知实数x,y满足x2+y2-4x-6y+9=0,则x2+y2的取值范围是$[17-4\sqrt{13},17+4\sqrt{13}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△OAB中,$\overrightarrow{OC}$=$\frac{1}{4}$$\overrightarrow{OA}$,$\overrightarrow{OD}$=$\frac{2}{5}$$\overrightarrow{OB}$,AD与BC交于点M,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$.在线段AC上取一点E,在线段BD上取一点F,使EF过点M,设$\overrightarrow{OE}$=p$\overrightarrow{OA}$,$\overrightarrow{OF}$=q$\overrightarrow{OB}$.
(1)用$\vec a,\vec b$向量表示$\overrightarrow{OM}$
(2 )求证:$\frac{1}{6p}$+$\frac{1}{3q}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知△ABC的面积为$\frac{1}{4}({a^2}+{b^2}-{c^2})$,则角C的度数是(  )
A.45B.60C.120D.135

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线x+2y+3=0将圆(x-a)2+(y+5)2=3平分,则a=(  )
A.13B.7C.-13D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在等差数列{an}中,若a1+a3+a5=3,则a2+a4等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.周立波是海派清口创始人和《壹周•立波秀》节目的主持人,他的点评视角独特,语言幽默犀利,给观众留下了深刻的印象.某机构为了了解观众对《壹周•立波秀》节目的喜爱程度,随机调查了观看了该节目的140名观众,得到如下的列联表:(单位:名)
总计
喜爱4060100
不喜爱202040
总计6080140
(Ⅰ)从这60名男观众中按对《壹周•立波秀》节目是否喜爱采取分层抽样,抽取一个容量为6的样本,问样本中喜爱与不喜爱的观众各有多少名?
(Ⅱ)根据以上列联表,问能否在犯错误的概率不超过0.025的前提下认为观众性别与喜爱《壹周•立波秀》节目有关.(精确到0.001)
(Ⅲ)从(Ⅰ)中的6名男性观众中随机选取两名作跟踪调查,求选到的两名观众都喜爱《壹周•立波秀》节目的概率.
p(k2≥k00.100.050.0250.0100.005
k02.7053.8415.0246.6357.879
附:临界值表参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,求$\frac{1}{m}$+$\frac{2}{n}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知a1=5,an=2an-1+3(n≥2),则a6=253.

查看答案和解析>>

同步练习册答案