如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8, AB=2DC=
.
(1)设M是PC上的一点,
证明:平面MBD⊥平面PAD;
(2)求四棱锥P-ABCD的体积.
(1)证明 在△ABD中,由于AD=4,BD=8,AB=
,
所以AD2+BD2=AB2.故AD⊥BD. ……………………………………………………2分
又平面PAD⊥平面ABCD,平面
平面ABCD=AD,
平面ABCD,
所以BD⊥平面PAD,………………………………………………………4分
又
平面MBD,故平面MBD⊥平面PAD. ………………7分
(2)解 过P作PO⊥AD交AD于O,
由于平面PAD⊥平面ABCD,
所以PO⊥平面ABCD.
因此PO为四棱锥P-ABCD的高,……………………………9分
又△PAD是边长为4的等边三角形,
因此
………………………………10分
在底面四边形ABCD中,AB∥DC, AB=2DC, 所以四边形ABCD是梯形,
在Rt△ADB中,斜边AB边上的高为![]()
此即为梯形ABCD的高,
所以四边形ABCD的面积为
…………………………12分
故
………………………………………………………14分
科目:高中数学 来源: 题型:
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com