精英家教网 > 高中数学 > 题目详情

设O为坐标原点,F1,F2是椭圆数学公式的左、右焦点,若在椭圆上存在点P满足数学公式,且数学公式,则该椭圆的离心率为________.


分析:由于=+),两边平方,再利用余弦定理即可求得该椭圆的离心率.
解答:令||=m,||=n,m+n=2a.
=+),=a,
=+2+
a2=(m2+2mncos+n2),
∴3a2=m2+n2+mn=(m+n)2-mn=4a2-mn,
∴a2=mn.
在△PF1F2中,由余弦定理得:=m2+n2-2mn×=(m+n)2-3mn,
即4c2=4a2-3mn=4a2-3a2=a2
∴e==
故答案为:
点评:本题考查向量的数量积与余弦定理的综合应用,考查方程思想与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设O为坐标原点,F1,F2是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的焦点,若在双曲线上存在点P,满足F1PF2=60°,|OP|=
10
a
,则该双曲线的渐近线方程为(  )
A、
3
y=0
B、
3
x±y=0
C、
2
y=0
D、
2
x±y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

设O为坐标原点,F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,若在椭圆上存在点P满足F1PF2=
π
3
,且|OP|=
3
2
a
,则该椭圆的离心率为
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设O为坐标原点,F1,F2是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的焦点,若在椭圆上存在点P,满足∠F1PF2=60°,|OP|=
3
2
a
,则该椭圆的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设O为坐标原点,F1,F2是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠F1PF2=60°,|OP|=
7
2
a,则该双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设O为坐标原点,F1,F2是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠F1PF2=30°,|OP|=
7
a,则该双曲线的渐近线方程为?

查看答案和解析>>

同步练习册答案