£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀ·Ö£©
£¨A£©£¨¼«×ø±êÓë²ÎÊý·½³Ì£©Ö±Ïßl£ºx-y+b=0ÓëÇúÏß
x=1+
2
cos¦È
y=-2+
2
sin¦È
(¦È
ÊDzÎÊý£©ÏàÇУ¬Ôòb=
-1»ò-5
-1»ò-5
£®
£¨B£©Éè6¡Ü|x-a|+|x-b|¶ÔÈÎÒâµÄx¡ÊRºã³ÉÁ¢£®ÔòaÓëbÂú×ãµÄ¹ØϵÊÇ
|a-b|¡Ý6
|a-b|¡Ý6
£®
£¨C£©ÈçͼËùʾ£¬Ô²OµÄÖ±¾¶Îª6£¬CΪԲÖÜÉÏÒ»µã£®BC=3£¬¹ýC×÷Ô²µÄÇÐÏßl£®¹ýA×÷lµÄ´¹ÏßAD£¬´¹×ãΪD£¬ÔòÏ߶ÎCDµÄ³¤Îª
3
3
2
3
3
2
£®
·ÖÎö£º£¨A£©°ÑÇúÏß
x=1+
2
cos¦È
y=-2+
2
sin¦È
(¦È
ÊDzÎÊý£©µÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¿ÉµÃ±íʾһ¸öÔ²£¬ÔÙÓÉÖ±Ïßl£ºx-y+b=0ÓëÇúÏßÏàÇпɵÃÔ²Ðĵ½Ö±ÏߵľàÀëµÈÓڰ뾶£¬ÓÉ´ËÇóµÃbµÄÖµ£®
£¨B£©ÓÉÓÚ|x-a|+|x-b|±íʾÊýÖáÉϵÄx¶ÔÓ¦µãµ½a¡¢b¶ÔÓ¦µãµÄ¾àÀëÖ®ºÍ£¬Æä×îСֵΪ|a-b|£¬¿ÉµÃ|a-b|¡Ý6£®
£¨C£©ÓÉÇÐÏßÐÔÖÊ¿ÉÖªOC´¹Ö±ÓÚÖ±Ïßl£¬µÃ³öOCƽÐÐÓÚAD£¬¸ù¾ÝABΪԲµÄÖ±¾¶£¬µÃµ½Èý½ÇÐÎABCΪֱ½ÇÈý½ÇÐΣ¬ÔÙ¸ù¾ÝBCºÍABµÄ³¤¶È£¬ÀûÓù´¹É¶¨ÀíÇó³öACµÄ³¤£¬ÇÒÀûÓÃÔÚÖ±½ÇÈý½ÇÐεÄÐÔÖÊÍƳö¡ÏCADµÈÓÚ30¡ã£¬´Ó¶øÇóµÃÇó³öCD£®
½â´ð£º½â£º£¨A£©°ÑÇúÏß
x=1+
2
cos¦È
y=-2+
2
sin¦È
(¦È
ÊDzÎÊý£©µÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³ÌΪ £¨x-1£©2+£¨y+2£©2=2£¬±íʾÒÔA£¨1£¬-2£©ÎªÔ²ÐÄ£¬°ë¾¶µÈÓÚ
2
µÄÔ²£®
ÓÉÖ±Ïßl£ºx-y+b=0ÓëÇúÏßÏàÇпɵÃ
2
=
|1+2+b|
2
£¬½âµÃ b=-1 »ò b=-5£¬
¹Ê´ð°¸Îª-1»ò-5£®
£¨B£©ÓÉÓÚ|x-a|+|x-b|±íʾÊýÖáÉϵÄx¶ÔÓ¦µãµ½a¡¢b¶ÔÓ¦µãµÄ¾àÀëÖ®ºÍ£¬Æä×îСֵΪ|a-b|£¬¹ÊÓÉ6¡Ü|x-a|+|x-b|¶ÔÈÎÒâµÄx¡ÊRºã³ÉÁ¢£¬
¿ÉµÃ|a-b|¡Ý6£¬
¹Ê´ð°¸Îª|a-b|¡Ý6£®
£¨C£©Á¬½ÓOC£¬ÔòOC¡ÍÖ±Ïßl£¬ËùÒÔOC¡ÎAD£®¡ßABΪԲµÄÖ±¾¶£¬¡à¡ÏACB=90¡ã£®
ÓÖAB=6£¬BC=3£¬ËùÒÔ¡ÏCAB=30¡ã£¬AC=
62-2
=3
3
£¬ÓÉOA=OCµÃ£¬¡ÏACO=¡ÏCAB=30¡ã£®
¡ßOC¡ÎAD£¬¡à¡ÏCAD=¡ÏACO=30¡ã£¬¡àCD=
1
2
AC
=
1
2
•3
3
=
3
3
2
£¬
¹Ê´ð°¸Îª
3
3
2
£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é°Ñ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³ÌµÄ·½·¨£¬µãµ½Ö±ÏߵľàÀ빫ʽµÄÓ¦Óã¬Ö±ÏߺÍÔ²µÄλÖùØϵ£®¾ø¶ÔÖµµÄÒâÒ壬¾ø¶ÔÖµ²»µÈʽµÄ½â·¨£®Ñ§ÉúÁé»îÔËÓÃÔ²µÄÇÐÏß´¹Ö±ÓÚ¹ýÇеãµÄÖ±¾¶£¬ÕÆÎÕÔ²ÖеÄһЩ»ù±¾ÐÔÖÊ£¬Áé»îÔËÓÃÖ±½ÇÈý½ÇÐεı߽ǹØϵ»¯¼òÇóÖµ£¬ÊÇÒ»µÀ×ÛºÏÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍø£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀ·Ö£©
A£®£¨²»µÈʽѡ×öÌ⣩²»µÈʽ|x+1|¡Ý|x+2|µÄ½â¼¯Îª
 
£®
B£®£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩ÈçͼËùʾ£¬¹ý¡ÑOÍâÒ»µãP×÷Ò»ÌõÖ±ÏßÓë¡ÑO½»ÓÚA£¬BÁ½µã£¬
ÒÑÖªPA=2£¬µãPµ½¡ÑOµÄÇÐÏß³¤PT=4£¬ÔòÏÒABµÄ³¤Îª
 
£®
C£®£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ÈôÖ±Ïß3x+4y+m=0ÓëÔ²
x=1+cos¦È
y=-2+sin¦È
£¨¦ÈΪ²ÎÊý£©Ã»Óй«¹²µã£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨ÈýÑ¡Ò»£¬¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀ·Ö£©
£¨1£©£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ÔÚÖ±½Ç×ø±êϵÖÐÔ²CµÄ²ÎÊý·½³ÌΪ
x=1+2cos¦È
y=
3
+2sin¦È
£¨¦ÈΪ²ÎÊý£©£¬ÔòÔ²CµÄÆÕͨ·½³ÌΪ
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4
£®
£¨2£©£¨²»µÈʽѡ½²Ñ¡×öÌ⣩É躯Êýf£¨x£©=|2x+1|-|x-4|£¬Ôò²»µÈʽf£¨x£©£¾2µÄ½â¼¯Îª
{x|x£¼-7»òx£¾
5
3
}
{x|x£¼-7»òx£¾
5
3
}
£®
£¨3£©£¨¼¸ºÎÖ¤Ã÷Ñ¡½²Ñ¡×öÌ⣩ ÈçͼËùʾ£¬µÈÑüÈý½ÇÐÎABCµÄµ×±ßAC³¤Îª6£¬ÆäÍâ½ÓÔ²µÄ°ë¾¶³¤Îª5£¬ÔòÈý½ÇÐÎABCµÄÃæ»ýÊÇ
3
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
£¨A£©£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩Èçͼ£¬CDÊÇÔ²OµÄÇÐÏߣ¬ÇеãΪC£¬µãBÔÚÔ²OÉÏ£¬BC=2£¬¡ÏBCD=30¡ã£¬ÔòÔ²OµÄÃæ»ýΪ
4¦Ð
4¦Ð
£»
£¨B£©£¨¼«×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩¼«×ø±ê·½³Ì¦Ñ=2sin¦È+4cos¦È±íʾµÄÇúÏ߽ئÈ=
¦Ð
4
(¦Ñ¡ÊR)
ËùµÃµÄÏÒ³¤Îª
3
2
3
2
£»
£¨C£©£¨²»µÈʽѡ×öÌ⣩  ²»µÈʽ|2x-1|£¼|x|+1½â¼¯ÊÇ
£¨0£¬2£©
£¨0£¬2£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣©
A£®Èçͼ£¬¡÷ABCÊÇ¡ÑOµÄÄÚ½ÓÈý½ÇÐΣ¬PAÊÇ¡ÑOµÄÇÐÏߣ¬PB½»ACÓÚµãE£¬½»¡ÑOÓÚµãD£®ÈôPA=PE£¬¡ÏABC=60¡ã£¬PD=1£¬PB=9£¬ÔòEC=
4
4
£®
B£® PΪÇúÏßC1£º
x=1+cos¦È
y=sin¦È
£¬£¨¦ÈΪ²ÎÊý£©ÉÏÒ»µã£¬ÔòËüµ½Ö±ÏßC2£º
x=1+2t
y=2
£¨tΪ²ÎÊý£©¾àÀëµÄ×îСֵΪ
1
1
£®
C£®²»µÈʽ|x2-3x-4|£¾x+1µÄ½â¼¯Îª
{x|x£¾5»òx£¼-1»ò-1£¼x£¼3}
{x|x£¾5»òx£¼-1»ò-1£¼x£¼3}
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁжþÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀÔļǷ֣®£©
£¨A£©£¨Ñ¡ÐÞ4-4×ø±êϵÓë²ÎÊý·½³Ì£©ÇúÏß
x=cos¦Á
y=a+sin¦Á
£¨¦ÁΪ²ÎÊý£©ÓëÇúÏߦÑ2-2¦Ñcos¦È=0µÄ½»µã¸öÊýΪ
 
¸ö£®
£¨B£©£¨Ñ¡ÐÞ4-5²»µÈʽѡ½²£©Èô²»µÈʽ|x+1|+|x-3| ¡Ýa+
4
a
¶ÔÈÎÒâµÄʵÊýxºã³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸