精英家教网 > 高中数学 > 题目详情
已知α,β,γ是三个不同的平面,α∩γ=m,β∩γ=n.则(   )
A.若m⊥n,则α⊥βB.若α⊥β,则m⊥n
C.若m∥n,则α∥βD.若α∥β,则m∥n
D.

试题分析:由题意若m⊥n,则α⊥β 不一定成立;若α⊥β,则m⊥n或m??n或m∩n=P;若m∥n,则α∥β 或α∩β=l;若α∥β,则m∥n.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,⊥面,为线段上的点.

(Ⅰ)证明:⊥面 ;
(Ⅱ)若的中点,求所成的角的正切值;
(Ⅲ)若满足⊥面,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E为棱SB上任一点.

(Ⅰ)求证:无论E点取在何处恒有
(Ⅱ)设,当平面EDC平面SBC时,求的值;
(Ⅲ)在(Ⅱ)的条件下求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P-ABCD的底面为直角梯形,AD∥BC,∠BCD=900,PA=PB,PC=PD.

(I) 试判断直线CD与平面PAD是否垂直,并简述理由;
(II)求证:平面PAB⊥平面ABCD;
(III)如果CD=AD+BC,二面角P-CB-A等于600,求二面角P-CD-A的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:四边形是梯形,,,三角形是等边三角形,且平面 平面,

(1)求证:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在梯形中,,,平面平面,四边形是矩形,,点在线段EF上.

(1)求异面直线所成的角;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面.下列四个命题中,正确的是(    )
A.,,则
B.,则
C.,,则
D.,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不同的直线,是两个不同的平面,则下列命题中的真命题是(   )
A.若B.若
C.若D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不同的直线,是两个不同的平面,则下列命题正确的是(  )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

同步练习册答案