精英家教网 > 高中数学 > 题目详情

【题目】某企业为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取100件产品作为样本称出它们的质量(单位:毫克),质量值落在的产品为合格品,否则为不合格品.如表是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图.

产品质量/毫克

频数

165175]

3

175185]

2

185195]

21

195205]

36

205215]

24

215225]

9

225235]

5

(Ⅰ)根据乙流水线样本的频率分布直方图,求乙流水线样本质量的中位数(结果保留整数);

(Ⅱ)从甲流水线样本中质量在的产品中任取2件产品,求两件产品中恰有一件合格品的概率;

甲流水线

乙流水线

总计

合格品

不合格品

总计

(Ⅲ)由以上统计数据完成下面2×2列联表,能否在犯错误的概率不超过0.15的前提下认为产品的包装合格与两条自动包装流水线的选择有关?

下面临界值表仅供参考:

PK2k

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中na+b+c+d

【答案】(Ⅰ)(Ⅱ))不能在犯错误的概率不超过0.15的前提下,认为产品的包装合格与两条自动包装流水线的选择有关.

【解析】

(Ⅰ)求出前三组的频率之和及前四组的频率之和,则可判断中位数在第四组,设其大小为解得

(Ⅱ)甲流水线样本中质量在的产品共有5件,其中合格品有2件,设为;不合格品3件,设为,再利用列举法以及古典概型概率公式可得;

(Ⅲ)先得列联表,再根据表中数据,计算出观测值,结合临界值表可得.

(Ⅰ)因为前三组的频率之和

前四组的频率之和

所以中位数在第四组,设为

,解得

(Ⅱ)甲流水线样本中质量在的产品共有5件,其中合格品有2件,设为;不合格品3件,设为

从中任取2件的所有取法有10种,

恰有一件合格品的取法有6种,

所以两件产品中恰有一件合格品的概率为

(Ⅲ)由乙流水线样本的频率分布直方图可知,合格品的个数为

甲流水线

乙流水线

总计

合格品

92

96

188

不合格品

8

4

12

总计

100

100

200

所以,2×2列联表是:

所以

不能在犯错误的概率不超过0.15的前提下,认为产品的包装合格与两条自动包装流水线的选择有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆Cx2+y2+2x4y+30

1)若直线lx+y0与圆C交于AB两点,求弦AB的长;

2)从圆C外一点Px1y1)向该圆引一条切线,切点为MO为坐标原点,且有|PM||PO|,求使得|PM|取得最小值的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高铁是一种快捷的交通工具,为我们的出行提供了极大的方便。某高铁换乘站设有编号为①,②,③,④,⑤的五个安全出口,若同时开放其中的两个安全出口,疏散名乘客所需的时间如下:

安全出口编号

①②

②③

③④

④⑤

①⑤

疏散乘客时间(s)

120

220

160

140

200

则疏散乘客最快的一个安全出口的编号是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电子计算机诞生于20世纪中叶,是人类最伟大的技术发明之一.计算机利用二进制存储信息,其中最基本单位是“位(bit)”,1位只能存放2种不同的信息:0或l,分别通过电路的断或通实现.“字节(Byte)”是更大的存储单位,1Byte=8bit,因此1字节可存放从00000000(2)至11111111(2)共256种不同的信息.将这256个二进制数中,所有恰有相邻两位数是1其余各位数均是0的所有数相加,则计算结果用十进制表示为

A. 254B. 381C. 510D. 765

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电子计算机诞生于20世纪中叶,是人类最伟大的技术发明之一.计算机利用二进制存储信息,其中最基本单位是“位(bit)”,1位只能存放2种不同的信息:0或l,分别通过电路的断或通实现.“字节(Byte)”是更大的存储单位,1Byte=8bit,因此1字节可存放从00000000(2)至11111111(2)共256种不同的信息.将这256个二进制数中,所有恰有相邻两位数是1其余各位数均是0的所有数相加,则计算结果用十进制表示为

A. 254B. 381C. 510D. 765

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的矩形ABCD中,AB=AD=2,点E为AD边上异于A,D两点的动点,且EF//AB,G为线段ED的中点,现沿EF将四边形CDEF折起,使得AE与CF的夹角为60°,连接BD,FD.

(1)探究:在线段EF上是否存在一点M,使得GM//平面BDF,若存在,说明点M的位置,若不存在,请说明理由;

(2)求三棱锥G—BDF的体积的最大值,并计算此时DE的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

Ⅰ)由折线图看出,可用线性回归模型拟合yt的关系,请用相关系数加以说明;

Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.

附注:

参考数据:

≈2.646.

参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ( 为自然对数的底数).

(Ⅰ)求函数的极值;

(Ⅱ)当时,若直线与曲线没有公共点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知椭圆C:(ab>0)的左、右顶点分别为A1(﹣2,0),A2(2,0),右准线方程为x=4.过点A1的直线交椭圆C于x轴上方的点P,交椭圆C的右准线于点D.直线A2D与椭圆C的另一交点为G,直线OG与直线A1D交于点H.

(1)求椭圆C的标准方程;

(2)若HG⊥A1D,试求直线A1D的方程;

(3)如果,试求的取值范围.

查看答案和解析>>

同步练习册答案