精英家教网 > 高中数学 > 题目详情
5.设命题p:?x∈R,f(x)•g(x)≠0,则¬p为(  )
A.?x0∈R,f(x0)=0或g(x0)=0B.?x0∈R,f(x0)=0且g(x0)=0
C.?x∈R,f(x)=0或g(x)=0D.?x∈R,f(x)=0且g(x)=0

分析 利用全称命题的否定是特称命题写出结果即可.

解答 解:因为全称命题的否定是特称命题,命题p:?x∈R,f(x)•g(x)≠0,则¬p为所以?x0∈R,f(x0)=0或g(x0)=0,
故选:A.

点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.某同学在研究三角形的性质时,发现了有些三角形的三边长有以下规律:
①3(3×4+4×5+5×3)≤(3+4+5)2<4(3×4+4×5+5×3);
②3(6×8+8×9+9×6)≤(6+8+9)2<4(6×8+8×9+9×6);
③3(3×4+4×6+6×3)≤(3+4+6)2<4(3×4+4×6+6×3).
分析以上各式的共同特征,试猜想出关于任一三角形三边长a,b,c的一般性的不等式结论,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设曲线y=$\frac{2}{x}$在点(2,1)处的切线与直线ax-y+1=0垂直,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=|ex-1|,a>0>b,f(a)=f(b),则b(ea-2)的最大值为(  )
A.$\frac{1}{e}$B.1C.2D.e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知抛物线C1:y2=2px与圆C2:(x-2)2+y2=4交于O,A,B三点,且△OAB为直角三角形.
(1)求C1的方程;
(2)过坐标原点O作直线l分别交C1,C2于点F,E,若E是OF的中点,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将函数f(x)=sin(2x+$\frac{π}{3}$)的图象分别向左、右平移φ(φ>0)个单位所得图象恰好重合,则φ的最小值为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某机构为了解某地区居民收入情况,随机抽取了100,名居民进行调查,根据调查结果绘制的居民月收入的频率分布直方图如图所示,已知[3500,4500),[4500,5500),[5500,6500)月收入段的居民人数成等差数列.
(1)求直方图中a,b的值,并估计这100名居民月收入的平均数$\overline x$(同一组中的数据用该组区间的中点值作代表);
(2)若月收入不低于6500元的称“高收入群体”,在月收入[5500,6500)段和[6500,7500)段按比例抽取5人,再从5人中随机选取3人了解其所从事的职业,求3人中至少有一人属于“高收入人群体”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知2cos2$\frac{A}{2}$+(cosB+$\sqrt{3}$sinB)cosC=1.
(1)求角C的大小;
(2)若c=2$\sqrt{3}$,且△ABC的面积为$\sqrt{3}$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,⊙O是△ABC的外接圆,AD平分∠BAC交BC于D,交△ABC的外接圆于E.
(1)求证:$\frac{AB}{AC}=\frac{BD}{DC}$;
(2)若AB=3,AC=2,BD=1,求AD的长.

查看答案和解析>>

同步练习册答案