精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sin(ωx+φ)的图象过点A(
π
6
2
),其中ω=
1
2
(tan15°+cot15°)φ∈(0,
π
2
)

(1)求φ、ω的值.
(2)求函数f(x)的最大值及最大值时x的取值集合..
分析:(1)利用同角三角函数关系式把tan15°和cot15°化为正弦和余弦,就可求出ω的值,再把点A(
π
6
2

代入函数f(x)=2sin(ωx+φ)中求出φ值.
(2)把2x+
12
看做一个整体,当这个整体等于
π
2
+2kπ时,函数有最大值,且最大值等于 2,再求出此时x的取值范围即可.
解答:答案:(1)∵ω=
1
2
(tan15°+cot15°)
=
1
2
(
sin15°
cos15°
+
cos15°
sin15°
)

=
sin215°+cos215°
2sin15°cos15°
=
1
sin30°
=2
∴函数f(x)=2sin(ωx+φ)=2sin(2x+φ)
∵函数f(x)的图象过点A(
π
6
2

2
=2sin(2×
π
6
+φ),
2
=2sin(
π
3
+φ),
∴sin(
π
3
+φ)=
2
2

π
3
+φ=
π
4
+2kπ,k∈Z,或
π
3
+φ=
4
+2kπ,k∈Z
∴φ=-
π
12
+2kπ,k∈Z,或φ=
12
+2kπ,k∈Z,
∵φ∈(0,
π
2
),∴φ=
12

ω=2,?=
12

(2)由(1)知函数f(x)=2sin(2x+
12

∴当2x+
12
=
π
2
+2kπ,k∈Z,即x=kπ+
π
24
,k∈Z时,函数f(x)有最大值,且最大值为2.
此时x的取值集合为{x|x=kπ+
π
24
,k∈Z}
点评:本题主要考查根据三角函数的性质求解析式,以及三角函数的最大值的求法,做题时要借助于基本正弦函数的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案