精英家教网 > 高中数学 > 题目详情
如图,在矩形ABCD中,AB>·AD,E为AD的中点,连结EC,作EF⊥EC,且EF交AB于F,连结FC.设=k,是否存在实数k,使△AEF、△ECF、△DCE与△BCF都相似?若存在,给出证明;若不存在,请说明理由.
假设存在实数k的值,满足题设.
①先证明△AEF∽△DCE∽△ECF.因为EF⊥EC,
所以∠AEF=90°-∠DEC=∠DCE.
而∠A=∠D=90°,故△AEF∽△DCE.
故得.又DE=EA,所以.
又∠CEF=∠EAF=90°,所以△AEF∽△ECF.
②再证明可以取到实数k的值,使△AEF∽△BCF,
由于∠AFE+∠BFC≠90°,故不可能有∠AFE=∠BFC,
因此要使△AEF∽△BCF,应有∠AFE=∠BFC,
此时,有,又AE=BC,故得AF=BF=AB.
由△AEF∽△DCE,可知
因此,AB2,所以,求得k=.
可以验证,当k=时,这四个三角形都是有一个锐角等于60°的直角三角形,故它们都相似.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在△ABC中,∠C=90°,BE是角平分线,DE⊥BE交AB于D,圆O是△BDE的外接圆.

(1)求证:AC是圆O的切线;
(2)如果AD=6,AE=6,求BC的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知相交于A、B两点,过A点作切线交于点E,连接EB并延长交于点C,直线CA交于点D,
  
(1)当点D与点A不重合时(如图1),证明:ED2=EB·EC;
(2)当点D与点A重合时(如图2),若BC=2,BE=6,求的直径长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PA、PB是圆O的两条切线,A、B是切点,C是劣弧AB(不包括端点)上一点,直线PC交圆O于另一点D,Q在弦CD上,且求证:

(1);(2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(2012•广东)(几何证明选讲选做题)如图,圆O中的半径为1,A、B、C是圆周上的三点,满足∠ABC=30°,过点A作圆O的切线与 O C 的延长线交于点P,则图PA= _________ 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AC为圆O的直径,弦BD⊥AC于点P,PC=2,PA=8,求tan∠ACD的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,梯形ABCD中,AD∥BC,EF是中位线,BD交EF于P,已知EP∶PF=1∶2,AD=7cm,求BC的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD中,DF⊥AB,垂足为F,DF=3,AF=2FB=2,延长FB到E,使BE=FB.连结BD、EC,若BD∥EC,求△BCD和四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在中,为垂足,若AE=4,BE=1,则AC=   .

查看答案和解析>>

同步练习册答案