【题目】已知函数
(
).
(1)若
,讨论
的单调性;
(2)若
在区间
内有两个极值点,求实数a的取值范围.
【答案】(1)
在
上单调递减,在
上单调递增. (2)![]()
【解析】
(1)求出函数的导数,解关于导函数的方程,求出函数的单调区间,求出函数的极值即可;
(2)求出函数的导数,通过讨论
的范围,求出函数的单调区间,结合函数的零点个数确定
的范围即可.
解:(1)由题意可得
的定义域为
,
![]()
当
时,易知![]()
∴由
得
,由
得
,
∴
在
上单调递减,在
上单调递增.
(2)由(1)可得
,
当
时,
,
记
,则
,
∵
在
内有两个极值点,
∴
在
内有两个零点,
∴
.
令
,则
,
当
,即
时,
,所以在
上单调递减,
的图像至多与x轴有一个交点,不满足题意.
当
,即
时,在
上
,
单调递增,
的图像至多与x轴有一个交点,不满足题意.
当
,即
时,
在
上单调递增,在
上单调递减
由
知,要使
在
内有两个零点,必须满足
,解得
.
综上,实数a的取值范围是
.
科目:高中数学 来源: 题型:
【题目】以下说法:
①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;
②设有一个回归方程
,变量
增加1个单位时,
平均增加5个单位
③线性回归方程
必过![]()
④设具有相关关系的两个变量
的相关系数为
,那么
越接近于0,
之间的线性相关程度越高;
⑤在一个
列联表中,由计算得
的值,那么
的值越大,判断两个变量间有关联的把握就越大。
其中错误的个数是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“不忘初心、牢记使命”主题教育活动正在全国开展,某区政府为统计全区党员干部一周参与主题教育活动的时间,从全区的党员干部中随机抽取n名,获得了他们一周参加主题教育活动的时间(单位:时)的频率分布直方图,如图所示,已知参加主题教育活动的时间在
内的人数为92.
![]()
(1)估计这些党员干部一周参与主题教育活动的时间的平均值;
(2)用频率估计概率,如果计划对全区一周参与主题教育活动的时间在
内的党员干部给予奖励,且参与时间在
,
内的分别获二等奖和一等奖,通过分层抽样方法从这些获奖人中随机抽取5人,再从这5人中任意选取3人,求3人均获二等奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点为别为
、
,且过点
和
.
![]()
(1)求椭圆的标准方程;
(2)如图,点
为椭圆上一动点(非长轴端点),
的延长线与椭圆交于点
,
的延长线与椭圆交于点
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某北方村庄4个草莓基地,采用水培阳光栽培方式种植的草莓个大味美,一上市便成为消费者争相购买的对象.光照是影响草莓生长的关键因素,过去50年的资料显示,该村庄一年当中12个月份的月光照量X(小时)的频率分布直方图如下图所示(注:月光照量指的是当月阳光照射总时长).
![]()
(1)求月光照量
(小时)的平均数和中位数;
(2)现准备按照月光照量来分层抽样,抽取一年中的4个月份来比较草莓的生长状况,问:应在月光照量
,
,
的区间内各抽取多少个月份?
(3)假设每年中最热的5,6,7,8,9,10月的月光照量
是大于等于240小时,且6,7,8月的月光照量
是大于等于320小时,那么,从该村庄2018年的5,6,7,8,9,10这6个月份之中随机抽取2个月份的月光照量进行调查,求抽取到的2个月份的月光照量
(小时)都不低于320的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现代足球运动是世上开展得最广泛、影响最大的运动项目,有人称它为“世界第一运动”.早在2000多年前的春秋战国时代,就有了一种球类游戏“蹴鞠”,后来经过阿拉伯人传到欧洲,发展成现代足球.1863年10月26日,英国人在伦敦成立了世界上第一个足球运动组织——英国足球协会,并统一了足球规则.人们称这一天是现代足球的诞生日.如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的公共边叫做足球的棱.已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为______个,该足球表面的棱为______条.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=
a(0<
≦1). w.w.w..c.o.m
(Ⅰ)求证:对任意的![]()
(0、1),都有AC⊥BE:
(Ⅱ)若二面角C-AE-D的大小为600C,求
的值。![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.
![]()
(Ⅰ)证明:AB1⊥平面A1B1C1;
(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com