精英家教网 > 高中数学 > 题目详情
18.设$a=(\frac{7}{9})^{5}$,$b=(\frac{9}{7})^{\frac{1}{5}}$,$c=lo{g}_{2}\frac{7}{9}$,则a,b,c的大小关系是(  )
A.b<a<cB.c<a<bC.c<b<aD.b<c<a

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:∵$a=(\frac{7}{9})^{5}$∈(0,1),$b=(\frac{9}{7})^{\frac{1}{5}}$>1,$c=lo{g}_{2}\frac{7}{9}$<0,
则a,b,c的大小为c<a<b.
故选:B.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.过点P(8,1)的直线与双曲线$\frac{{x}^{2}}{4}$-y2=1相交于A,B两点,且P 是线段AB的中点,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=ln(${\sqrt{1+{x^2}}$-x)+2,则f(lg5)+f(lg$\frac{1}{5}}$)=(  )
A.4B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将函数$f(x)=sin({4x+\frac{π}{3}})$的图象向左平移φ(φ>0)个单位后关于直线x=$\frac{π}{12}$对称,则φ的最小值为(  )
A.$\frac{π}{6}$B.$\frac{5π}{24}$C.$\frac{π}{4}$D.$\frac{7π}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知x>0,y>0,且x+y=2xy,则x+4y的最小值为(  )
A.4B.$\frac{7}{2}$C.$\frac{9}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.曲线y=x3-2x+m在x=1处的切线斜率等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|x≥3或x≤1},B={x|2<x<4},则(∁RA)∩B=(  )
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax2+$\frac{2}{x}$(a∈R)为奇函数.
(1)比较f(log23)、f(log38)、f(log326)的大小,并说明理由;(提示:log23≈1.59)
(2)若t>0,且f(t+x2)+f(1-x-x2-2x)>0对x∈[2,3]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数y=f(x)在定义域(-$\frac{3}{2}$,3)内可导,其图象如图所示.记y=f(x)的导函数为y=f′(x),则不等式$\frac{f′(x)}{x-1}$≤0的解集为[2,3)∪(-$\frac{3}{2}$,-$\frac{1}{3}$].

查看答案和解析>>

同步练习册答案