【题目】已知函数在上有最大值1和最小值0,设.
(1)求的值;
(2)若不等式在上有解,求实数的取值范围;
(3)若方程 (为自然对数的底数)有三个不同的实数解,求实数的取值范围.
【答案】(1) 的值分别为1、0.(2) .(3) .
【解析】试题分析:
(1)由题意得到关于实数m,n的方程组,求解方程组可得的值分别为1、0.
(2)由题意换元,令,结合换元之后的不等式的解集可得实数的取值范围是.
(3) 记,原问题等价于,求解不等式组可得实数的取值范围是.
试题解析:
(1),当时, 在上是增函数,∴,
即,解得,
当时, ,无最大值和最小值;
当时, 在上是减函数,∴,即,解得,
∵,∴舍去.
综上, 的值分别为1、0.
(2)由(1)知,∴在上有解等价于
在上有解,
即在上有解,令,则,
∵,∴,记,∵,∴,
∴的取值范围为.
(3)原方程可化为,令,则,
由题意知有两个不同的实数解 , ,
其中, 或, ,
记,则得.
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的长轴长是短轴长的倍,右焦点为,点分别是该椭圆的上、下顶点,点是直线上的一个动点(与轴交点除外),直线交椭圆于另一点,记直线, 的斜率分别为
(1)当直线过点时,求的值;
(2)求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位从一所学校招收某类特殊人才,对20位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:
例如表中运动协调能力良好且逻辑思维能力一般的学生是4人,由于部分数据丢失,只知道从这20位参加测试的学生中随机抽取一位,抽到逻辑思维能力优秀的学生的概率为.
(1)求、的值;
(2)从运动协调能力为优秀的学生中任意抽取2位,求其中至少有一位逻辑思维能力优秀的学生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
若,过点的直线交曲线于两点,且,求直线的方程;
若曲线表示圆,且直线与圆交于两点,是否存在实数,使得以为直径的圆过原点,若存在,求出实数的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的方程为,点是抛物线上到直线距离最小的点,点是抛物线上异于点的点,直线与直线交于点,过点与轴平行的直线与抛物线交于点.
(Ⅰ)求点的坐标;
(Ⅱ)证明直线恒过定点,并求这个定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛.
(Ⅰ)求应从这三个协会中分别抽取的运动员人数;
(Ⅱ)将抽取的6名运动员进行编号,编号分别为,从这6名运动员中随机抽取2名参加双打比赛.
(ⅰ)用所给编号列出所有可能的结果;
(ⅱ)设为事件“编号为的两名运动员至少有一人被抽到”,求事件发生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com