【题目】已知直线
的方程为
,点
是抛物线
上到直线
距离最小的点,点
是抛物线上异于点
的点,直线
与直线
交于点
,过点
与
轴平行的直线与抛物线
交于点
.
![]()
(Ⅰ)求点
的坐标;
(Ⅱ)证明直线
恒过定点,并求这个定点的坐标.
【答案】(Ⅰ)
(Ⅱ)![]()
【解析】
试题分析:(Ⅰ)到直线
距离最小的点,可根据点到直线距离公式,取最小值时的点;也可根据几何意义得为与直线
平行且与抛物线相切的切点:如根据点
到直线
的距离
得当且仅当
时取最小值,(Ⅱ)解析几何中定点问题的解决方法,为以算代证,即先求出直线AB方程,根据恒等关系求定点.先设点
,求出直线AP方程
,与直线
方程联立,解出点
纵坐标为
.即得
点的坐标为
,再根据两点式求出直线AB方程
,最后根据方程对应
恒成立得定点![]()
试题解析:(Ⅰ)设点
的坐标为
,则
,
所以,点
到直线
的距离
.
当且仅当
时等号成立,此时
点坐标为
.………………………………4分
(Ⅱ)设点
的坐标为
,显然
.
当
时,
点坐标为
,直线
的方程为
;
当
时,直线
的方程为
,
化简得
;
综上,直线
的方程为
.
与直线
的方程
联立,可得点
的纵坐标为
.
因为,
轴,所以
点的纵坐标为
.
因此,
点的坐标为
.
当
,即
时,直线
的斜率
.
所以直线
的方程为
,
整理得
.
当
,
时,上式对任意
恒成立,
此时,直线
恒过定点
,
当
时,直线
的方程为
,仍过定点
,
故符合题意的直线
恒过定点
.……………………………………13分
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)当
时,求
的单调区间;
(2)设
,
是曲线
图象上的两个相异的点,若直线
的斜率
恒成立,求实数
的取值范围.
(3)设函数
有两个极值点
,
且
,若
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程.
已知曲线
的参数方程为
(
为参数),以直角坐标系原点为极点,
轴正半轴为极轴建立极坐标系.
(1)求曲线
的极坐标方程;
(2)若直线的极坐标方程为
,求直线被曲线
截得的弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
在
上有最大值1和最小值0,设
.
(1)求
的值;
(2)若不等式
在
上有解,求实数
的取值范围;
(3)若方程
(
为自然对数的底数)有三个不同的实数解,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,摩天轮的半径为
米,点
距地面高度为
米,摩天轮做匀速运动,每
分钟转一圈,以点
为原点,过点
且平行与地平线的直线为
轴建立平面直角坐标系
,设点
的起始位置在最低点(且在最低点开始时),设在时刻
(分钟)时点
距地面的高度
(米),则
与
的函数关系式
__________.在摩天轮旋转一周内,点
到地面的距离不小于
米的时间长度为 __________(分钟)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有10道题,其中6道甲类题,4道乙类题,小明同学从中任取3道题解答.
(Ⅰ)求小明同学至少取到1道乙类题的概率;
(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.若小明同学答对每道甲类题的概率都是
,答对每道乙类题的概率都是
,且各题答对与否相互独立.求小明同学至少答对2道题的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】班主任为了对本班学生的考试成绩进行分析,决定从全班
名男同学,
名女同学中随机抽取一个容量为
的样本进行分析.
(1)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出计算式即可,不必计算出结果)
(2)随机抽取
位,他们的数学分数从小到大排序是:
,物理分数从小到大排序是:
.
①若规定
分以上(包括
分)为优秀,求这
位同学中恰有
位同学的数学和物理分数均为优秀的概率;
②若这
位同学的数学、物理分数事实上对应如下表:
![]()
根据上表数据,由变量
与
的相关系数可知物理成绩
与数学成绩
之间具有较强的线性相关关系,现求
与
的线性回归方程(系数精确到
).
参考公式:回归直线的方程是:
,其中对应的回归估计值
,
参考数据:
,
,
,,
,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com