【题目】已知动圆过定点
,且与定直线
相切.
(1)求动圆圆心的轨迹
的方程;
(2)若
是轨迹
的动弦,且
过
, 分别以
、
为切点作轨迹
的切线,设两切线交点为
,证明:
.
【答案】(1)
(2)详见解析
【解析】
试题(I)由题意可得:动圆圆心到定点(0,2)与到定直线y=-2的距离相等,利用抛物线的定义求轨迹方程即可;(II)设AB:y=kx+2,将直线的方程代入抛物线的方程,消去y得到关于x的一元二次方程,再结合根与系数的关系利用切线的几何意义即可求得过抛物线上A、B两点的切线斜率关系,从而解决问题
试题解析:(1)依题意,圆心的轨迹是以
为焦点,
为准线的抛物线
因为抛物线焦点到准线距离等于4, 所以圆心的轨迹方程是
(2)![]()
![]()
![]()
,
,
抛物线方程为
所以过抛物线上A、B两点的切线斜率分别是
,
.
![]()
所以,
(注:也可设
,再由
,设![]()
则直线AQ:
,联立直线和抛物线方程,由直线和抛物线相切得![]()
可得
,同理可得
,从而证
)
科目:高中数学 来源: 题型:
【题目】已知O为坐标原点,椭圆C:
的左、右焦点分别为
,
,右顶点为A,上顶点为B,若
,
,
成等比数列,椭圆C上的点到焦点
的距离的最大值为
.
求椭圆C的标准方程;
过该椭圆的右焦点
作倾角为
的直线与椭圆交于M,N两点,求
的内切圆的半径.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:
喜欢统计课程 | 不喜欢统计课程 | |
男生 | 20 | 5 |
女生 | 10 | 20 |
临界值参考:
| 0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:
,其中
)
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过
的前提下,认为“喜欢“应用统计”课程与性别有关”
B.在犯错误的概率不超过
的前提下,认为“喜欢“应用统计”课程与性别无关”
C.有
以上的把握认为“喜欢应用统计”课程与性别有关”
D.有
以上的把握认为“喜欢“应用统计”课程与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.
方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.
方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.
(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;
(2)若某顾客获得抽奖机会.
①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;
②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,过点
的直线
的参数方程为
(
为参数),以坐标原点
为极点,以
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,曲线
的极坐标方程为
.
(1)若点
的直角坐标为
,求直线
及曲线
的直角坐标方程;
(2)若点
在
上,直线
与
交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国清朝数学家李善兰在1859年翻译《代数学》中首次将“
”译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”1930年美国人给出了我们课本中所学的集合论的函数定义,已知集合
,
,给出下列四个对应法则,请由函数定义判断,其中能构成从
到
的函数的是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知过原点O的直线与函数
的图象交于A,B两点,分别过A,B作y轴的平行线与函数
图象交于C,D两点,若
轴,则四边形ABCD的面积为_____.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在空间直角坐标系
中,已知正四棱锥
的高
,点
和
分别在
轴和
轴上,且
,点
是棱
的中点.
![]()
(1)求直线
与平面
所成角的正弦值;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中正确的是( )
A.对具有线性相关关系的变量
有一组观测数据
,其线性回归方程是
,且
,则实数
的值是![]()
B.正态分布
在区间
和
上取值的概率相等
C.若两个随机变量的线性相关性越强,则相关系数
的值越接近于1
D.若一组数据
的平均数是2,则这组数据的众数和中位数都是2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com