精英家教网 > 高中数学 > 题目详情
7、已知等差数列{an}的前n项和为Sn,若m>1且am-1+am+1-am2-1=0,S2m-1=39,则m等于(  )
分析:利用等差数列的性质am-1+am+1=2am,根据已知中am-1+am+1-am2-1=0,我们易求出am的值,再根据am为等差数列{an}的前2m-1项的中间项(平均项),可以构造一个关于m的方程,解方程即可得到m的值.
解答:解:∵数列{an}为等差数列
则am-1+am+1=2am
则am-1+am+1-am2-1=0可化为
2am-am2-1=0
解得:am=1,又∵S2m-1=(2m-1)am=39
则m=20
故选C.
点评:本题考查的知识点是等差数列的性质,其中等差数列最重要的性质:当m+n=p+q时,am+an=ap+aq,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案