分析 根据函数f(x)的解析式,列出不等式组,求出解集得f(x)的定义域,再计算f($\frac{1}{2}$)的值.
解答 解:∵函数f(x)=log3(1+x)-log3(1-x)
∴$\left\{\begin{array}{l}{1+x>0}\\{1-x>0}\end{array}\right.$,
解得-1<x<1,
∴f(x)的定义域是(-1,1);
∴f($\frac{1}{2}$)=log3(1+$\frac{1}{2}$)-log3(1-$\frac{1}{2}$)
=log3$\frac{\frac{3}{2}}{\frac{1}{2}}$
=log33
=1.
故答案为:(-1,1),1.
点评 本题考查了根据函数的解析式求定义域的应用问题,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{63}{16}$ | B. | $\frac{63}{16}$ | C. | -$\frac{63}{8}$ | D. | $\frac{63}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com