精英家教网 > 高中数学 > 题目详情
17.若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,已知X~N(0,52),则P(5<X≤10)=(  )
A.0.4077B.0.2718C.0.1359D.0.0453

分析 利用正态分布的对称性即可得出结论.

解答 解:∵X~N(0,52),
∴P(-5<X≤5)=0.6826,P(-10<X≤10)=0.9544,
∴P(5<X≤10)=$\frac{1}{2}$(0.9544-0.6826)=0.1359.
故选C.

点评 本题考查了正态分布的特点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.求函数y=$\frac{si{n}^{2}x}{3}$+$\frac{3}{si{n}^{2}x}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的图象的两条相邻对称轴之间的距离为$\frac{π}{2}$,且图象上一个最低点为M($\frac{2}{3}$π,-1).
(1)求函数f(x)的解析式;
(2)当x∈[$\frac{π}{8}$,$\frac{π}{2}$]时,求函数f(x)的值域;
(3)若方程f(x)=$\frac{2}{3}$在x∈[0,$\frac{π}{3}$]上有两个不相等的实数根x1,x2,求cos(x1-x2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系中,以坐标原点O为极点,以x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ=8cosθ+10sinθ.
(1)求曲线C的直角坐标方程及参数方程;
(2)若点P(x,y)为曲线C上任意一点,求证:x+y的最大值大于18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在区间[-1,m]上随机选取一个数x,若x≤1的概率为$\frac{2}{5}$,则实数m的值为(  )
A.$\frac{3}{2}$B.2C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知四边形ABCD是平行四边形,点E是CD中点.点F是BE中点,若$\overrightarrow{AF}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$,则λ+μ=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.近年来,食品安全越来越被广大民众所关注,有机蔬菜因其无污染、富营养和高质量等品质而受到大众喜爱.为了解某地区某种有机蔬菜的年产量x(单位:吨)对价格y(单位:千元/吨)和年利润z的影响,对近五年该有机蔬菜的年产量和价格统计如表:
x31245
y5.56.563.72.3
(1)求y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$
(2)假设该有机蔬菜的成本为每吨2千元,并且可以全部卖出,预测年产量为多少吨时,年利润z取到最大值?(结果保留两位小数)
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设复数 Z1,Z2 在复平面内对应的点关于虚轴对称,Z1=2+i,则 Z2=(  )
A.2-iB.-2-iC.-2+iD.1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=x+sinπx,则f(${\frac{1}{2017}}$)+f(${\frac{2}{2017}}$)+f(${\frac{3}{2017}}$)+…+f(${\frac{4033}{2017}}$)的值为4033.

查看答案和解析>>

同步练习册答案