精英家教网 > 高中数学 > 题目详情

如图已知:菱形所在平面与直角梯形ABCD所在平面互相垂直,分别是线段的中点. 

(1)求证:平面平面;
(2)试问在线段上是否存在点,使得平面,若存在,求的长并证明;若不存在,说明理由.

(1)证明详见解析;(2)存在,.

解析试题分析:(1)先证,由面面垂直的性质定理得到平面,所以,由勾股定理证,所以由线面垂直的判定定理得平面,所以面面垂直的判定定理得平面平面;(2)先证四边形是平行四边形,得,由线面平行的判定定理得平面.
试题解析:(1)证明:在菱形中,因为,所以是等边三角形,
是线段的中点,所以,          1分
因为平面平面,所以平面,所以;   3分
在直角梯形中,,得到:,从而,所以,所以平面 5分,
平面,所以平面平面  7分
(2)存在,

证明:设线段的中点为
则梯形中,得到:,  9分
,所以
所以四边形是平行四边形,所以
平面平面,所以平面。      12分
考点:1.面面垂直的判定定理;2.线面垂直的判定定理;3.线面平行的判定定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知在四棱锥中,底面是矩形,平面分别是的中点.

(1)求证:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,侧棱底面,底面为矩形,上一点,

(I)若的中点,求证平面
(II)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,重合后的点记为,构成一个三棱锥.

(1)请判断与平面的位置关系,并给出证明;
(2)证明平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,平面平面,四边形为平行四边形,.

(Ⅰ)求证:平面
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是矩形边上的点,边的中点,,现将沿边折至位置,且平面平面.
⑴ 求证:平面平面
⑵ 求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面凸多面体的体积为的中点.
(Ⅰ)求证:平面
(Ⅱ)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形中(图1),中点为,将图1沿直线折起,使二面角(图2)
 
(1)过作直线平面,且平面=,求的长度。
(2)求直线与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图,在长方体中,,点E为AB的中点.

(Ⅰ)求与平面所成的角;
(Ⅱ)求二面角的平面角的正切值.

查看答案和解析>>

同步练习册答案