精英家教网 > 高中数学 > 题目详情

如图,平面凸多面体的体积为的中点.
(Ⅰ)求证:平面
(Ⅱ)求证:平面平面.

(Ⅰ)详见解析;(Ⅱ)详见解析.

解析试题分析:(Ⅰ)取的中点G,连结只需证明;(Ⅱ)先证明,再证平面平面.
试题解析:(Ⅰ)证明:平面


∴四边形为直角梯形.    (1分)
.       (2分)
∴凸多面体的体积

求得.                   (3分)
的中点G,连结如图:


,四边形为平行四边形,
.                    (5分)
又∵GD面BDE,AF面BDE,
平面.                 (7分)
(Ⅱ)证明:,F为BC的中点,
.                    (8分)
由(Ⅰ)知平面.
.               (9分)
,∴.            (10分)
又∵,∴.          (11分)
,∴面⊥面.       (12分)
考点:1.线面平行;2.线面垂直;3.面面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,侧面底面,,中点,底面是直角梯形,,,

(1) 求证:平面
(2) 求证:平面平面
(3) 设为棱上一点,,试确定的值使得二面角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图已知:菱形所在平面与直角梯形ABCD所在平面互相垂直,分别是线段的中点. 

(1)求证:平面平面;
(2)试问在线段上是否存在点,使得平面,若存在,求的长并证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PA丄平面ABCD,==90°=1200,AD=AB=1,AC交BD于 O 点.
(I)求证:平面PBD丄平面PAC;
(Ⅱ)求三棱锥D-ABP和三棱锥B-PCD的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体中,是线段的中点.
(Ⅰ)求证:平面
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形是正方形, 
(Ⅰ)求证:平面平面
(Ⅱ)求三棱锥的高

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在直角梯形中,
. 把沿对角线折起到的位置,如图2所示,使得点在平面上的正投影恰好落在线段上,连接,点分别为线段的中点.
(I)求证:平面平面
(II)求直线与平面所成角的正弦值;
(III)在棱上是否存在一点,使得到点四点的距离相等?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在五面体中,四边形是正方形,平面

(1)求异面直线所成角的余弦值;
(2)证明:平面
(3)求二面角的正切值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,平面平面. 过点,垂足为,点分别为棱的中点.

求证:(1)平面平面
(2).

查看答案和解析>>

同步练习册答案