精英家教网 > 高中数学 > 题目详情

如图,四边形是正方形, 
(Ⅰ)求证:平面平面
(Ⅱ)求三棱锥的高

①见解析 ②

解析试题分析:(I)要证面面垂直,只要证明线面垂直,只要证明线线垂直:即找到直线(Ⅱ)因为,所以求点面距离转化为等体积方法计算,容易求出三角形 的面积与高的值, 再计算出三角形 的面积即可
试题解析:(Ⅰ)平面,且平面

是正方形,,而梯形相交,
平面
平面
平面平面         4分
(Ⅱ)设三棱锥的高为
已证平面,又,则
由已知,得,   6分

         8分

        10分
         12分
故三棱锥的高为
(其他做法参照给分)
考点:1 线面位置关系;2 垂直的判定与性质;3 等体积法求椎体的高

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在四棱锥中,底面是正方形,侧面是正三角形,平面底面

(Ⅰ)如果为线段VC的中点,求证:平面
(Ⅱ)如果正方形的边长为2, 求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,平面平面,四边形为平行四边形,.

(Ⅰ)求证:平面
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面平面

(Ⅰ)求证:平面平面
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面凸多面体的体积为的中点.
(Ⅰ)求证:平面
(Ⅱ)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在底面为平行四边形的四棱柱中,底面,,,
(1)求证:平面平面
(2)若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等边三角形的边长为3,点分别是边上的点,且满足(如图1).将△沿折起到△的位置,使二面角成直二面角,连结 (如图2).

(1)求证:平面
(2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱的侧棱与底面垂直,底面是等腰直角三角形,,侧棱分别是的中点,点在平面上的射影是的垂心

(1)求证:
(2)求与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,

(I)求证
(II)设

查看答案和解析>>

同步练习册答案