精英家教网 > 高中数学 > 题目详情

如图,在四棱锥中,平面平面

(Ⅰ)求证:平面平面
(Ⅱ)求二面角的大小.

(Ⅰ)详见解析;(Ⅱ)

解析试题分析:(Ⅰ)根据两个平面垂直的条件,在平面内找到一条垂直于平面的直线即可,取的中点,可证明平面;(Ⅱ) 二面角与二面角相等,二面角的平面角为,求出即可.(解法2采用的是向量的方法,求出平面的法向量,即可证明平面平面;求出平面的法向量,即可求出二面角.)
(Ⅰ)证明:取的中点的中点,连,则 

平面平面,∴
是平行四边形,.
,又平面.
平面.平面.
从而平面平面.                                6分
(Ⅱ)二面角与二面角相等,
由(Ⅰ)知二面角的平面角为.


为正方形,
∴二面角的大小为.                            12分
解法2:取的中点,连.
,又平面.
为原点建立如图空间直角坐标系

则由已知条件有:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知正三棱柱中,上的动点.

(1)求五面体的体积;
(2)当在何处时,平面,请说明理由;
(3)当平面时,求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,菱形的边长为4,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,.

(1)求证:平面
(2)求证:平面平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知多面体的底面是边长为的正方形,底面,且
(Ⅰ)求多面体的体积;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面平行,要求保留作图痕迹,但不要求证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PA丄平面ABCD,==90°=1200,AD=AB=1,AC交BD于 O 点.
(I)求证:平面PBD丄平面PAC;
(Ⅱ)求三棱锥D-ABP和三棱锥B-PCD的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图, 在三棱锥中,

(1)求证:平面平面
(2)若,当三棱锥的体积最大时,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形是正方形, 
(Ⅰ)求证:平面平面
(Ⅱ)求三棱锥的高

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在各棱长均为的三棱柱中,侧面底面

(1)求侧棱与平面所成角的正弦值的大小;
(2)已知点满足,在直线上是否存在点,使?若存在,请确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1,证明直线BC1平行于平面DA1C,并求直线BC1到平面D1AC的距离.

查看答案和解析>>

同步练习册答案