精英家教网 > 高中数学 > 题目详情

如图,在各棱长均为的三棱柱中,侧面底面

(1)求侧棱与平面所成角的正弦值的大小;
(2)已知点满足,在直线上是否存在点,使?若存在,请确定点的位置;若不存在,请说明理由.

(1)(2)存在点,使.

解析试题分析:(1)首先根据几何体的性质建立空间直角坐标系,利用“侧棱与平面所成角,即是向量与平面的法向量所成锐角的余角”,借助向量夹角公式进行计算;(2)假设存在点P满足,设出其坐标,然后根据建立等量关系,确定P点坐标即可.
试题解析:(1)∵侧面底面,作于点,∴平面
,且各棱长都相等,∴.                                              2分

故以为坐标原点,建立如图所示的空间直角坐标系,则


.  4分
设平面的法向量为
   
解得.由
而侧棱与平面所成角,即是向量与平面的法向量所成锐角的余角,
∴侧棱与平面所成角的正弦值的大小为                 6分
(2)∵,而 

又∵,∴点的坐标为
假设存在点符合题意,则点的坐标可设为,∴
为平面的法向量,
∴由,得.             10分
平面,故存在点
使,其坐标为
即恰好为点.                  12分
考点:1.线面角;2.线面平行;(3)空间向量的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为矩形,分别是的中点,

(Ⅰ)求证:平面
(Ⅱ)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面平面

(Ⅰ)求证:平面平面
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在底面为平行四边形的四棱柱中,底面,,,
(1)求证:平面平面
(2)若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等边三角形的边长为3,点分别是边上的点,且满足(如图1).将△沿折起到△的位置,使二面角成直二面角,连结 (如图2).

(1)求证:平面
(2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面四边形的4个顶点都在球的表面上,为球的直径,为球面上一点,且平面 ,点的中点.
(1) 证明:平面平面
(2) 求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱的侧棱与底面垂直,底面是等腰直角三角形,,侧棱分别是的中点,点在平面上的射影是的垂心

(1)求证:
(2)求与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在等腰梯形CDEF中,CB、DA是梯形的高,,现将梯形沿CB、DA折起,使,得一简单组合体如图2示,已知分别为的中点.
   
图1                              图2
(1)求证:平面
(2)求证:
(3)当多长时,平面与平面所成的锐二面角为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,ABCD是边长为2的正方形,ED⊥平面ABCD, ED="1," EF//BD且2EF=BD.

(1)求证:平面EAC⊥平面BDEF;
(2)求几何体ABCDEF的体积.

查看答案和解析>>

同步练习册答案