精英家教网 > 高中数学 > 题目详情

如图1,在等腰梯形CDEF中,CB、DA是梯形的高,,现将梯形沿CB、DA折起,使,得一简单组合体如图2示,已知分别为的中点.
   
图1                              图2
(1)求证:平面
(2)求证:
(3)当多长时,平面与平面所成的锐二面角为

(1)主要是得到(2)关键是证明平面,(3)

解析试题分析:(1)证明:连,∵四边形是矩形,中点,
中点,                   
中,中点,则的中位线
       
平面平面平面
(其它证法,请参照给分)

(2)依题意知 且
平面
平面,∴,    
中点,∴
结合,知四边形是平行四边形
               
,∴ ∴,即 --8分
       ∴平面
平面,  ∴.            
(3)解:如图,分别以所在的直线为轴建立空间直角坐标系

,则
易知平面的一个法向量为,  
设平面的一个法向量为
 故,即
,则,故           

依题意,,解得,                 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知多面体的底面是边长为的正方形,底面,且
(Ⅰ)求多面体的体积;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面平行,要求保留作图痕迹,但不要求证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在各棱长均为的三棱柱中,侧面底面

(1)求侧棱与平面所成角的正弦值的大小;
(2)已知点满足,在直线上是否存在点,使?若存在,请确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:正方体的棱长为1,点分别是的中点

(1)求证: 
(2)求异面直线所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形是正方形,⊥平面分别为的中点,且.

(1)求证:平面⊥平面
(2)求三棱锥与四棱锥的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥中,的中点,

(1)求证:
(2)求证:
(3)求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1,证明直线BC1平行于平面DA1C,并求直线BC1到平面D1AC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体,中,,点在棱AB上移动.

(1 )证明:
(2)当的中点时,求点到面的距离;  
(3)等于何值时,二面角的大小为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在正方体ABCD—A1B1C1D1中,E、F分别为棱BB1和DD1的中点.

(1)求证:平面B1FC//平面ADE;
(2)试在棱DC上取一点M,使平面ADE;
(3)设正方体的棱长为1,求四面体A­1—FEA的体积.

查看答案和解析>>

同步练习册答案