精英家教网 > 高中数学 > 题目详情

如图,菱形的边长为4,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,.

(1)求证:平面
(2)求证:平面平面
(3)求二面角的余弦值.

(1)详见解析;(2)详见解析;(3).

解析试题分析:(1)利用三角形的中位线平行于相应的底边证明,然后结合直线与平面平行的判定定理即可证明平面;(2)先利用翻折时的相对位置不变证明,然后利用勾股定理证明,并结合直线与平面垂直的判定定理先证明平面,最终利用平面与平面垂直的判定定理证明平面平面;(3)作,连接,利用(2)中的结论平面,先证明平面,进而说明为二面角的平面角,然后在中计算,即可计算二面角的余弦值.
试题解析:(1)因为O为AC的中点,M为BC的中点,所以.
因为平面ABD,平面ABD,所以平面.
(2)因为在菱形ABCD中,,所以在三棱锥中,.
在菱形ABCD中,AB=AD=4,,所以BD=4.因为O为BD的中点,
所以.因为O为AC的中点,M为BC的中点,所以.
因为,所以,即.
因为平面ABC,平面ABC,,所以平面ABC.
因为平面DOM,所以平面平面.
(3)作,连结DE.由(2)知,平面ABC,所以AB.
因为,所以平面ODE.因为平面ODE,所以.
所以是二面角的平面角.
在Rt△DOE中,
所以.所以二面角的余弦值为.
考点:直线与平面平行、平面与平面平行、二面角

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为直角梯形,,平面⊥底面的中点,是棱上的点,

(Ⅰ)求证:平面⊥平面
(Ⅱ)若为棱的中点,求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥中,底面是正方形,侧面是正三角形,平面底面

(Ⅰ)如果为线段VC的中点,求证:平面
(Ⅱ)如果正方形的边长为2, 求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为矩形,分别是的中点,

(Ⅰ)求证:平面
(Ⅱ)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,侧棱底面,底面为矩形,上一点,

(I)若的中点,求证平面
(II)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为圆柱的母线,是底面圆的直径,分别是的中点,

(1)证明:
(2)证明:
(3)求四棱锥与圆柱的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,平面平面,四边形为平行四边形,.

(Ⅰ)求证:平面
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面平面

(Ⅰ)求证:平面平面
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱的侧棱与底面垂直,底面是等腰直角三角形,,侧棱分别是的中点,点在平面上的射影是的垂心

(1)求证:
(2)求与平面所成角的大小.

查看答案和解析>>

同步练习册答案