精英家教网 > 高中数学 > 题目详情

如图,为圆柱的母线,是底面圆的直径,分别是的中点,

(1)证明:
(2)证明:
(3)求四棱锥与圆柱的体积比.

(1)详见解析; (2) 详见解析; (3).

解析试题分析:(1)证明线面平行,可证线线平行,所以通过证明四边形是平行四边形可知,从而证得.(2)证明面面垂直,可证线面垂直,所以通过证明,而,从而证得.(3)关键是求四棱锥的高,通过证明找到就是棱锥的高,再分别利用圆柱和棱锥的体积公式计算.
试题解析:(1)证明:连结.分别为的中点,∴.
,且.∴四边形是平行四边形,
. ∴.       4分
(2) 证明:为圆柱的母线,所以,即,又是底面圆的直径,所以,所以,所以
所以  9分
(3)解:由题,且由(1)知.∴,∴ ,∴. 因是底面圆的直径,得,且
,即为四棱锥的高.设圆柱高为,底半径为
.      14分
考点:1、线面平行的证明,2、面面垂直的证明,3、柱体和锥体的体积计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

正方形与梯形所在平面互相垂直,,点在线段上且不与重合。

(Ⅰ)当点M是EC中点时,求证:BM//平面ADEF;
(Ⅱ)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在六面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,ED⊥DG,EF∥DG.且AB=AD=DE=DG=2,AC=EF=1.  (1)求证:BF∥平面ACGD; (2)求二面角D­CG­F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC—A1B1C1,AB=AC=1,∠BAC=90°,连结A1B与∠A1BC=60°.

(Ⅰ)求证:AC⊥A1B;
(Ⅱ)设D是BB1的中点,求三棱锥D-A1BC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,菱形的边长为4,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,.

(1)求证:平面
(2)求证:平面平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱中,,D是AC的中点.

(Ⅰ)求证:平面
(Ⅱ)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知多面体的底面是边长为的正方形,底面,且
(Ⅰ)求多面体的体积;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面平行,要求保留作图痕迹,但不要求证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图, 在三棱锥中,

(1)求证:平面平面
(2)若,当三棱锥的体积最大时,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:正方体的棱长为1,点分别是的中点

(1)求证: 
(2)求异面直线所成角的余弦值。

查看答案和解析>>

同步练习册答案