精英家教网 > 高中数学 > 题目详情

如图,在五面体中,四边形是正方形,平面

(1)求异面直线所成角的余弦值;
(2)证明:平面
(3)求二面角的正切值。

(1);(2)略;(3)

解析试题分析:(1)因为四边形ADEF是正方形,所以FA∥ED.
故∠CED为异面直线CE与AF所成的角.
因为FA⊥平面ABCD,所以FA⊥CD.故ED⊥CD.
在Rt△CDE中,CD=1,ED=2, CE==3,故cos∠CED==
所以异面直线CE和AF所成角的余弦值为
(2)证明:过点B作BG∥CD,交AD于点G,
则∠BGA=∠CDA=45°.由∠BAD=45°,可得BG⊥AB,
从而CD⊥AB,又CD⊥FA,FA∩AB=A,所以CD⊥平面ABF;
(3)解:由(Ⅱ)及已知,可得AG=,即G为AD的中点.
取EF的中点N,连接GN,则GN⊥EF,
因为BC∥AD,所以BC∥EF.
过点N作NM⊥EF,交BC于M,
则∠GNM为二面角B-EF-A的平面角.
连接GM,可得AD⊥平面GNM,故AD⊥GM.
从而BC⊥GM.由已知,可得GM=
由NG∥FA,FA⊥GM,得NG⊥GM.
在Rt△NGM中,tan∠GNM=
所以二面角B-EF-A的正切值为
考点:异面直线所成的角、直线与平面垂直、二面角的计算。
点评:中档题,立体几何问题的解法,要牢记“转化与化归思想”,空将间题转化成平面问题.立体几何中的计算问题,要注意遵循“一作,二证,三计算”,避免出现只算不证的错误。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,侧棱底面,底面为矩形,上一点,

(I)若的中点,求证平面
(II)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面凸多面体的体积为的中点.
(Ⅰ)求证:平面
(Ⅱ)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等边三角形的边长为3,点分别是边上的点,且满足(如图1).将△沿折起到△的位置,使二面角成直二面角,连结 (如图2).

(1)求证:平面
(2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四面体中,分别是的中点,

(Ⅰ)求证:平面
(Ⅱ)求异面直线所成角余弦值的大小;
(Ⅲ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱的侧棱与底面垂直,底面是等腰直角三角形,,侧棱分别是的中点,点在平面上的射影是的垂心

(1)求证:
(2)求与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形中(图1),中点为,将图1沿直线折起,使二面角(图2)
 
(1)过作直线平面,且平面=,求的长度。
(2)求直线与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直棱柱ABC-中,D,E分别是AB,BB1的中点,=AC=CB=AB.

(Ⅰ)证明: //平面
(Ⅱ)求二面角D--E的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直四棱柱中,已知

(Ⅰ)求证:
(Ⅱ)设上一点,试确定的位置,使平面,并说明理由.

查看答案和解析>>

同步练习册答案