精英家教网 > 高中数学 > 题目详情

如图,直棱柱ABC-中,D,E分别是AB,BB1的中点,=AC=CB=AB.

(Ⅰ)证明: //平面
(Ⅱ)求二面角D--E的正弦值.

(Ⅰ)见解析(Ⅱ)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PA丄平面ABCD,==90°=1200,AD=AB=1,AC交BD于 O 点.
(I)求证:平面PBD丄平面PAC;
(Ⅱ)求三棱锥D-ABP和三棱锥B-PCD的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在五面体中,四边形是正方形,平面

(1)求异面直线所成角的余弦值;
(2)证明:平面
(3)求二面角的正切值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形是正方形,⊥平面分别为的中点,且.

(1)求证:平面⊥平面
(2)求三棱锥与四棱锥的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,四条侧棱长均相等.

(1)求证:平面
(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1,证明直线BC1平行于平面DA1C,并求直线BC1到平面D1AC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,平面平面. 过点,垂足为,点分别为棱的中点.

求证:(1)平面平面
(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,菱形的边长为6,,.将菱形沿对角线折起,得到三棱锥 ,点是棱的中点,.

(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图是一个直三棱柱(以A1B1C1为底面)被一平面
所截得到的几何体,截面为ABC.已知A1B1=B1C1=l,∠AlBlC1=90°,
AAl=4,BBl=2,CCl=3,且设点O是AB的中点。

(1)证明:OC∥平面A1B1C1
(2)求异面直线OC与AlBl所成角的正切值。

查看答案和解析>>

同步练习册答案