精英家教网 > 高中数学 > 题目详情
如图,正方体ABCD-A1B1C1D1中,E,F分别为BB1和A1D1的中点.证明:向量
A1B
B1C
EF
是共面向量.
分析:欲证向量
A1B
B1C
EF
是共面向量,即证明B1C和EF都与平面A1BD平行.连结A1D、BD,取A1D中点G,连结FG、BG,由三角形中位线定理和正方形的性质证出四边形BEFG为平行四边形,从而EF∥BG,利用线面平行判定定理证出EF∥平面A1BD,同理证出B1C∥平面A1BD,由此即可得到向量
A1B
B1C
EF
是共面向量.
解答:解:连结A1D、BD,取A1D中点G,连结FG、BG,
则有FG
.
1
2
DD1,BE
.
1
2
DD1
∴FG
.
BE,可得四边形BEFG为平行四边形.
∴EF∥BG.
∵EF?平面A1BD,BG?平面A1BD,∴EF∥平面A1BD.
同理可得B1C∥平面A1BD,而向量
A1B
是平面A1BD内的向量
∴向量
A1B
B1C
EF
都与平面A1BD平行.
由此可得:将向量
A1B
B1C
EF
作适当的平移后,可以共面于平面A1BD
A1B
B1C
EF
是共面向量.
点评:本题给出正方体ABCD-A1B1C1D1棱的中点E、F、G,求证向量
A1B
B1C
EF
是共面向量.着重考查了正方体的性质、线面平行判定定理和向量共面的证明等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶点都在球O的球面上,问球O的表面积.
(1) 如果球O和这个正方体的六个面都相切,则有S=
 

(2)如果球O和这个正方体的各条棱都相切,则有S=
 

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG.
(1)求GH长的取值范围;
(2)当GH取得最小值时,求证:EH与FG共面;并求出此时EH与FG的交点P到直线B1B的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,若E、F、G分别为棱BC、C1C、B1C1的中点,O1、O2分别为四边形ADD1A1、A1B1C1D1的中心,则下列各组中的四个点不在同一个平面上的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正方体ABCD-A1B1C1D1中,E、F、G、H分别是所在棱的三等分点,且BF=DE=C1G=C1H=
13
AB

(1)证明:直线EH与FG共面;
(2)若正方体的棱长为3,求几何体GHC1-EFC的体积.

查看答案和解析>>

同步练习册答案