精英家教网 > 高中数学 > 题目详情

已知函数f(x)=lnx,g(x)=x.
(Ⅰ)若x>1,求证:数学公式
(Ⅱ)求实数k的取值范围,使得方程数学公式有四个不同的实数根.

解:(Ⅰ)令=
当x>1时,F'(x)>0 恒成立,∴F(x)在(1,+∞)上是增函数.
∵F(x)在x=1 处连续,∴F(x)>F(1).
∵F(1)=0,∴当x∈(1,+∞)时,F(x)>0 恒成立.

(Ⅱ)原方程化为
,则
∵G(-x)=G(x),∴G(x)是偶函数.
当x≥0时,(x≥0),
=
∵x≥0,∴令G'(x)=0,得x=1.
当x∈[0,1),G'(x)<0,G(x)单调递减;
当x∈(1,+∞),G'(x)>0,G(x)单调递增.
∴x≥0时,在x=1处G(x)取得极小值为G(1)=
又G(0)=0,∴当k∈(,0)时函数(x≥0)与y=k 有两个不同的交点.
∵G(x)是偶函数,
∴G(x)=k在k∈(,0)时有四个不同的实数根.
分析:(Ⅰ)先令=,求导数得到
利用导数的性质得出F(x)在(1,+∞)上是增函数.F(x)>F(1).从而证得结论;
(Ⅱ)原方程化为,令,则
利用导数研究其单调性即可解决问题.
点评:本小题主要考查利用导数研究函数的单调性、利用导数研究函数的极值等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案