精英家教网 > 高中数学 > 题目详情

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.
 
(1)求证:平面PAC⊥平面PBC
(2)若AB=2,AC=1,PA=1,求二面角C­PB­A的余弦值.

(1)见解析  (2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设ab.
(1)求ab的夹角θ;
(2)若向量kab与ka-2b互相垂直,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABC­A1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.

(1)求证:AA1⊥平面ABC;
(2)求二面角A1­BC1­B1的余弦值;
(3)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P­ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.

(1)求直线PB与平面POC所成角的余弦值;
(2)求B点到平面PCD的距离;
(3)线段PD上是否存在一点Q,使得二面角Q­AC­D的余弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCDABAA1.
 
(1)证明:A1C⊥平面BB1D1D
(2)求平面OCB1与平面BB1D1D的夹角θ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,ABADABCDAB=2AD=2CD=2,EPB的中点.

(1)求证:平面EAC⊥平面PBC
(2)若二面角P-AC-E的余弦值为,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,已知PB⊥底面ABCDBCABADBCABAD=2,CDPD,异面直线PACD所成角等于60°.

(1)求证:面PCD⊥面PBD
(2)求直线PC和平面PAD所成角的正弦值的大小;
(3)在棱PA上是否存在一点E,使得二面角A-BE-D的余弦值为?若存在,指出点E在棱PA上的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥E-ABCD的底面为菱形,且∠ABC=60°,ABEC=2,AEBE.

(1)求证:平面EAB⊥平面ABCD
(2)求直线AE与平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在三棱柱ABCA1B1C1中,ABBCCAAA1=2,侧棱AA1⊥面ABCDE分别是棱A1B1AA1的中点,点F在棱AB上,且

(Ⅰ)求证:EF∥平面BDC1
(Ⅱ)求二面角EBC1D的余弦值.

查看答案和解析>>

同步练习册答案