精英家教网 > 高中数学 > 题目详情

如图,四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCDABAA1.
 
(1)证明:A1C⊥平面BB1D1D
(2)求平面OCB1与平面BB1D1D的夹角θ的大小.

(1)见解析(2)θ

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在四棱锥中,侧面底面,,底面是直角梯形,,,,

(1)求证:平面;
(2)设为侧棱上一点,,试确定的值,使得二面角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱(侧棱和底面垂直的棱柱)中,,,且满足.

(1)求证:平面侧面
(2)求二面角的平面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方形ADEF与梯形ABCD所在的平面互相垂直,,点M在线段EC上(除端点外)

(1)当点M为EC中点时,求证:平面
(2)若平面与平面ABF所成二面角为锐角,且该二面角的余弦值为时,求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,平面底面的中点.

(1)求证://平面
(2)求与平面BDE所成角的余弦值;
(3)线段PC上是否存在一点M,使得AM⊥平面PBD,如果存在,求出PM的长度;如果不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.
 
(1)求证:平面PAC⊥平面PBC
(2)若AB=2,AC=1,PA=1,求二面角C­PB­A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四边形ABCD是菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCDGH分别是CECF的中点.

(1)求证:平面AEF∥平面BDGH
(2)若平面BDGH与平面ABCD所成的角为60°,求直线CF与平面BDGH所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱ABC-A1B1C1中,△ABC是等边三角形,DBC的中点.

(1)求证:A1B∥平面ADC1
(2)若ABBB1=2,求A1D与平面AC1D所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,底面△ABC为等腰直角三角形,∠B = 900,D为棱BB1上一点,且面DA1 C⊥面AA1C1C.求证:D为棱BB1中点;(2)为何值时,二面角A -A1D - C的平面角为600.

查看答案和解析>>

同步练习册答案