精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前13项之和为
13π
4
,则tan(a6+a7+a8)等于(  )
A、
3
3
B、
3
C、-1
D、1
分析:根据等差数列的性质,由前13项之和为
13π
4
得到第七项的值,然后把所求的式子中的a6+a7+a8,利用等差数列的性质得到关于第七项的式子,把第七项的值代入到所求的式子中,利用诱导公式及特殊角的三角函数值即可求出值.
解答:解:S13=(a1+a13)+(a2+a12)+…+a7=13a7=
13π
4
,解得a7=
π
4

而tan(a6+a7+a8)=tan3a7=tan
4
=-tan
π
4
=-1.
故选C
点评:此题要求学生掌握等差数列的性质,灵活运用诱导公式及特殊角的三角函数值化简求值,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案