精英家教网 > 高中数学 > 题目详情
11.函数f(x)=excosx在点(0,f(0))处的切线斜率为(  )
A.0B.-1C.1D.$\frac{{\sqrt{2}}}{2}$

分析 先求函数f(x)=excosx的导数,因为函数图象在点(0,f(0))处的切线的斜率为函数在x=0处的导数,就可求出切线的斜率.

解答 解:∵f′(x)=excosx-exsinx,
∴f′(0)=e0(cos0-sin0)=1,
∴函数图象在点(0,f(0))处的切线的斜率为1.
故选C.

点评 本题考查了导数的运算及导数的几何意义,以及直线的倾斜角与斜率的关系,属于综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.函数f(x)对一切实数x,y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0.
(1)求f(0);
(2)求f(x);
(3)当0<x<2时不等式f(x)>ax-5恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数$\frac{4-2i}{{{{({1+i})}^2}}}$=(  )
A.1-2iB.1+2iC.-1+2iD.-1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.(2x-3)7的展开式中,各项系数的和为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(Ⅰ)计算lg8+3lg5;
(Ⅱ)计算(0.027)${\;}^{-\frac{1}{3}}$-(-$\frac{1}{7}$)-2+(2$\frac{7}{9}$)${\;}^{\frac{1}{2}}$-($\sqrt{2}$-1)0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若$a={2^{0.5}},b=ln2,c={log_2}sin\frac{2π}{5}$,则(  )
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知曲线$y=\frac{1}{3}{x^3}+\frac{4}{3}$,求曲线在点(2,4)处的切线与坐标轴围成的三角形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数$g(x)=2{e^x}+x-3\int_1^2{t^2}dt$的零点所在的区间是(  )
A.(-3,-1)B.(-1,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数组(x1,y1),(x2,y2),…,(x20,y20)满足线性回归方程$\widehaty=\widehatbx+\widehata$,则(x0,y0)满足线性回归方程$\widehaty=\widehatbx+\widehata$是“x0=$\frac{{{x_1}+{x_2}+…+{x_{20}}}}{20}$,y0=$\frac{{{y_1}+{y_2}+…+{y_{20}}}}{20}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案