精英家教网 > 高中数学 > 题目详情
20.函数$g(x)=2{e^x}+x-3\int_1^2{t^2}dt$的零点所在的区间是(  )
A.(-3,-1)B.(-1,1)C.(1,2)D.(2,3)

分析 利用积分,化简函数,再利用零点存在定理,即可得出结论.

解答 解:∵$3{∫}_{1}^{2}{t}^{2}dt$=${t}^{3}{|}_{1}^{2}$=8-1=7,
∴g(x)=2ex+x-7,
∴g′(x)=2ex+1>0,
∴g(x)在R上单调递增,
∵g(-3)=2e-3-10<0,g(-1)=2e-1-8<0,g(1)=2e-6<0,g(2)=2e2-5>0,
故选C.

点评 本题考查导数知识的运用,考查零点存在定理,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.各项为正数的数列{an}前n项和为Sn,且${S_{n+1}}={a_2}{S_n}+{a_1},\;n∈{N^*}$,当且仅当n=1,n=2时Sn<3成立,那么a2的取值范围是[1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=excosx在点(0,f(0))处的切线斜率为(  )
A.0B.-1C.1D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.同时抛掷两枚骰子,将得到的点数分别记为a,b.
(1)求a+b=7的概率;
(2)求点(a,b)在函数y=2x的图象上的概率;
(3)将a,b,4的值分别作为三条线段的长,将这两枚骰子抛掷三次,ξ表示这三次抛掷中能围成等腰三角形的次数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图在长方形ABCD中,已知AB=4,BC=2,M,N,P为长方形边上的中点,Q是边CD上的点,且CQ=3DQ,求 $\overrightarrow{MQ}$•$\overrightarrow{NP}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若sinα=$-\frac{3}{5}$,α是第四象限的角,则$cos(\frac{π}{4}+α)$=(  )
A.$-\frac{{7\sqrt{2}}}{10}$B.$\frac{{7\sqrt{2}}}{10}$C.$-\frac{{\sqrt{2}}}{10}$D.$\frac{{\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若a>b>0,则下列不等式中总成立的是(  )
A.a+$\frac{1}{a}$>b+$\frac{1}{b}$B.a+$\frac{1}{b}$>b+$\frac{1}{a}$C.$\frac{b}{a}$>$\frac{b+1}{a+1}$D.$\frac{2a-b}{a+2b}$>$\frac{a}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知随机变量ξ的分布列是:
ξ01234
P0.10.20.40.1x
则x=0.2,P(2≤ξ≤4)=0.7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线$\left\{\begin{array}{l}{x=sinθ+tsin15°}\\{y=cosθ-tsin75°}\end{array}\right.$(t为参数,θ是常数)的倾斜角是(  )
A.15°B.75°C.105°D.165°

查看答案和解析>>

同步练习册答案