精英家教网 > 高中数学 > 题目详情

【题目】《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年高考总成绩由语数外三门统考科目和物理、化学等六门选考科目组成,将每门选考科目的考生原始成绩从高到低划分为8个等级,参照正态分布原则,确定各等级人数所占比例分别为3%7%16%24%24%16%7%3%,选考科目成绩计入考生总成绩时,将AE等级内的考生原始成绩,依照等比例转换法则,分别转换到八个分数区间,得到考生的等级成绩.某市高一学生共6000人,为给高一学生合理选科提供依据,对六门选考科目进行测试,其中化学考试原始成绩大致服从正态分布

1)求该市化学原始成绩在区间的人数;

2)以各等级人数所占比例作为各分数区间发生的概率,按高考改革方案,若从全省考生中随机抽取3人,记X表示这3人中等级成绩在区间的人数,求

(附:若随机变量,则

【答案】14911人(2

【解析】

1)由正态分布曲线的对称性计算概率;

2)根据已知条件得等级成绩在区间内的概率为,则的所有可能取值为0123,且,由二项分布概率公式可计算出概率.

解:(1)∵化学原始成绩

∴化学原始成绩在的人数为(人);

2)因为以各等级人数所占比例作为各分数区间发生的概率,且等级成绩在区间的人数所占比例分别为16%24%,则随机抽取1人,其等级成绩在区间内的概率为

所以从全省考生中随机抽取3人,则的所有可能取值为0123,且

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,过点的直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.

(1)若点的直角坐标为,求直线及曲线的直角坐标方程

(2)若点上,直线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若的极值,求的值,并求的单调区间。

(2)若时,,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的左右焦点分别为.椭圆C上任一点P都满足,并且该椭圆过点.

求椭圆C的方程;

Ⅱ)过点的直线l与椭圆C交于A,B两点,过点Ax轴的垂线,交该椭圆于点M,求证:三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求适合下列条件的双曲线的标准方程.

1)焦点在x轴上,实轴长10,虚轴长8.

2)焦点在y轴上,焦距是10,虚轴长8.

3)离心率,经过点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的是(

A.对具有线性相关关系的变量有一组观测数据,其线性回归方程是,且,则实数的值是

B.正态分布在区间上取值的概率相等

C.若两个随机变量的线性相关性越强,则相关系数的值越接近于1

D.若一组数据的平均数是2,则这组数据的众数和中位数都是2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲、乙两名工人在同样条件下每天各生产100件产品,且每生产1件正品可获利20元,生产1件次品损失30元,甲,乙两名工人100天中出现次品件数的情况如表所示.

甲每天生产的次品数/件

0

1

2

3

4

对应的天数/天

40

20

20

10

10

乙每天生产的次品数/件

0

1

2

3

对应的天数/天

30

25

25

20

(1)将甲每天生产的次品数记为(单位:件),日利润记为(单位:元),写出的函数关系式;

(2)如果将统计的100天中产生次品量的频率作为概率,记表示甲、乙两名工人1天中各自日利润不少于1950元的人数之和,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,.

1)讨论函数的单调性;

(2)若函数个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求:

)求实数b 的取值范围;

)求圆C 的方程;

查看答案和解析>>

同步练习册答案