如图,已知四边形ABCD 是矩形,PA⊥平面ABCD,M, N分别是AB, PC的中点.
(1)求证:MN∥平面PAD;
(2)求证:MN⊥DC;
(1)见解析(2)见解析.
解析试题分析:(1)令E为PD的中点,连接AE,NE,根据三角形中位线定理,及中点的定义,我们易判断MN∥AE,结合线面平行的判定定理,即可得到MN∥平面PAD;
(2)根据已知中,四边形ABCD 是矩形,PA⊥平面ABCD,我们易结合线面垂直的判定定理,得到DC⊥平面PAD,进而得到DC⊥AE,由(1)中AE∥MN,根据两条平行线与同一条直线的夹角相等,即可得到结论.
试题解析:(1)设PD的中点为E,连AE, NE,则易得四边形AMNE是平行四边形,则 MN∥AE ,
,所以 MN∥平面PAD
(2)∵PA⊥平面ABCD , CD,∴PA⊥CD
又AD⊥CD , PA∩DA=A,∴ CD平面PAD ,∵
∴CD⊥AE ∵MN∥AE ∴MN⊥DC
考点:直线与平面平行的判定;直线与平面垂直的性质.
科目:高中数学 来源: 题型:解答题
已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的两个三等分点
(1)求证:AN∥平面 MBD;
(2)求异面直线AN与PD所成角的余弦值;
(3)求二面角M-BD-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知△ABC是边长为l的等边三角形,D、E分别是AB、AC边上的点,AD = AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到三棱锥A-BCF,其中.
(1)证明:DE∥平面BCF;
(2)证明:CF⊥平面ABF;
(3)当时,求三棱锥F-DEG的体积V.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在斜三棱柱中,侧面,,,底面是边长为的正三角形,其重心为点,是线段上一点,且.
(1)求证:侧面;
(2)求平面与底面所成锐二面角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在如图所示的几何体中,正方形ABCD和矩形ABEF所在的平面互相垂直,M为AF的中点,BN⊥CE.
(1)求证:CF∥平面MBD;
(2)求证:CF⊥平面BDN.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com